Files
pr-agent/pr_agent/tools/pr_code_suggestions.py

570 lines
30 KiB
Python

import asyncio
import copy
import textwrap
from functools import partial
from typing import Dict, List
from jinja2 import Environment, StrictUndefined
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
from pr_agent.algo.ai_handlers.litellm_ai_handler import LiteLLMAIHandler
from pr_agent.algo.pr_processing import get_pr_diff, get_pr_multi_diffs, retry_with_fallback_models
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.algo.utils import load_yaml, replace_code_tags, ModelType
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import get_git_provider
from pr_agent.git_providers.git_provider import get_main_pr_language
from pr_agent.log import get_logger
from pr_agent.servers.help import HelpMessage
from pr_agent.tools.pr_description import insert_br_after_x_chars
import difflib
class PRCodeSuggestions:
def __init__(self, pr_url: str, cli_mode=False, args: list = None,
ai_handler: partial[BaseAiHandler,] = LiteLLMAIHandler):
self.git_provider = get_git_provider()(pr_url)
self.main_language = get_main_pr_language(
self.git_provider.get_languages(), self.git_provider.get_files()
)
# limit context specifically for the improve command, which has hard input to parse:
if get_settings().pr_code_suggestions.max_context_tokens:
MAX_CONTEXT_TOKENS_IMPROVE = get_settings().pr_code_suggestions.max_context_tokens
if get_settings().config.max_model_tokens > MAX_CONTEXT_TOKENS_IMPROVE:
get_logger().info(f"Setting max_model_tokens to {MAX_CONTEXT_TOKENS_IMPROVE} for PR improve")
get_settings().config.max_model_tokens = MAX_CONTEXT_TOKENS_IMPROVE
# extended mode
try:
self.is_extended = self._get_is_extended(args or [])
except:
self.is_extended = False
if self.is_extended:
num_code_suggestions = get_settings().pr_code_suggestions.num_code_suggestions_per_chunk
else:
num_code_suggestions = get_settings().pr_code_suggestions.num_code_suggestions
self.ai_handler = ai_handler()
self.ai_handler.main_pr_language = self.main_language
self.patches_diff = None
self.prediction = None
self.cli_mode = cli_mode
self.vars = {
"title": self.git_provider.pr.title,
"branch": self.git_provider.get_pr_branch(),
"description": self.git_provider.get_pr_description(),
"language": self.main_language,
"diff": "", # empty diff for initial calculation
"num_code_suggestions": num_code_suggestions,
"extra_instructions": get_settings().pr_code_suggestions.extra_instructions,
"commit_messages_str": self.git_provider.get_commit_messages(),
}
self.token_handler = TokenHandler(self.git_provider.pr,
self.vars,
get_settings().pr_code_suggestions_prompt.system,
get_settings().pr_code_suggestions_prompt.user)
self.progress = f"## Generating PR code suggestions\n\n"
self.progress += f"""\nWork in progress ...<br>\n<img src="https://codium.ai/images/pr_agent/dual_ball_loading-crop.gif" width=48>"""
self.progress_response = None
async def run(self):
try:
get_logger().info('Generating code suggestions for PR...')
relevant_configs = {'pr_code_suggestions': dict(get_settings().pr_code_suggestions),
'config': dict(get_settings().config)}
get_logger().debug("Relevant configs", artifacts=relevant_configs)
if get_settings().config.publish_output and get_settings().config.publish_output_progress:
if self.git_provider.is_supported("gfm_markdown"):
self.progress_response = self.git_provider.publish_comment(self.progress)
else:
self.git_provider.publish_comment("Preparing suggestions...", is_temporary=True)
if not self.is_extended:
data = await retry_with_fallback_models(self._prepare_prediction, ModelType.TURBO)
else:
data = await retry_with_fallback_models(self._prepare_prediction_extended, ModelType.TURBO)
if not data:
data = {"code_suggestions": []}
if data is None or 'code_suggestions' not in data or not data['code_suggestions']:
get_logger().error('No code suggestions found for PR.')
pr_body = "## PR Code Suggestions ✨\n\nNo code suggestions found for PR."
get_logger().debug(f"PR output", artifact=pr_body)
if self.progress_response:
self.git_provider.edit_comment(self.progress_response, body=pr_body)
else:
self.git_provider.publish_comment(pr_body)
return
if (not self.is_extended and get_settings().pr_code_suggestions.rank_suggestions) or \
(self.is_extended and get_settings().pr_code_suggestions.rank_extended_suggestions):
get_logger().info('Ranking Suggestions...')
data['code_suggestions'] = await self.rank_suggestions(data['code_suggestions'])
if get_settings().config.publish_output:
self.git_provider.remove_initial_comment()
if ((not get_settings().pr_code_suggestions.commitable_code_suggestions) and
self.git_provider.is_supported("gfm_markdown")):
# generate summarized suggestions
pr_body = self.generate_summarized_suggestions(data)
get_logger().debug(f"PR output", artifact=pr_body)
# add usage guide
if get_settings().pr_code_suggestions.enable_help_text:
pr_body += "<hr>\n\n<details> <summary><strong>💡 Tool usage guide:</strong></summary><hr> \n\n"
pr_body += HelpMessage.get_improve_usage_guide()
pr_body += "\n</details>\n"
if get_settings().pr_code_suggestions.persistent_comment:
final_update_message = False
self.git_provider.publish_persistent_comment(pr_body,
initial_header="## PR Code Suggestions ✨",
update_header=True,
name="suggestions",
final_update_message=final_update_message, )
if self.progress_response:
self.progress_response.delete()
else:
if self.progress_response:
self.git_provider.edit_comment(self.progress_response, body=pr_body)
else:
self.git_provider.publish_comment(pr_body)
else:
self.push_inline_code_suggestions(data)
if self.progress_response:
self.progress_response.delete()
except Exception as e:
get_logger().error(f"Failed to generate code suggestions for PR, error: {e}")
if self.progress_response:
self.progress_response.delete()
else:
try:
self.git_provider.remove_initial_comment()
self.git_provider.publish_comment(f"Failed to generate code suggestions for PR")
except Exception as e:
pass
async def _prepare_prediction(self, model: str) -> dict:
self.patches_diff = get_pr_diff(self.git_provider,
self.token_handler,
model,
add_line_numbers_to_hunks=True,
disable_extra_lines=True)
if self.patches_diff:
get_logger().debug(f"PR diff", artifact=self.patches_diff)
self.prediction = await self._get_prediction(model, self.patches_diff)
else:
get_logger().error(f"Error getting PR diff")
self.prediction = None
data = self.prediction
return data
async def _get_prediction(self, model: str, patches_diff: str) -> dict:
variables = copy.deepcopy(self.vars)
variables["diff"] = patches_diff # update diff
environment = Environment(undefined=StrictUndefined)
system_prompt = environment.from_string(get_settings().pr_code_suggestions_prompt.system).render(variables)
user_prompt = environment.from_string(get_settings().pr_code_suggestions_prompt.user).render(variables)
response, finish_reason = await self.ai_handler.chat_completion(model=model, temperature=0.2,
system=system_prompt, user=user_prompt)
# load suggestions from the AI response
data = self._prepare_pr_code_suggestions(response)
# self-reflect on suggestions
if get_settings().pr_code_suggestions.self_reflect_on_suggestions:
response_reflect = await self.self_reflect_on_suggestions(data["code_suggestions"], patches_diff)
if response_reflect:
response_reflect_yaml = load_yaml(response_reflect)
code_suggestions_feedback = response_reflect_yaml["code_suggestions"]
if len(code_suggestions_feedback) == len(data["code_suggestions"]):
for i, suggestion in enumerate(data["code_suggestions"]):
try:
suggestion["score"] = code_suggestions_feedback[i]["suggestion_score"]
suggestion["score_why"] = code_suggestions_feedback[i]["why"]
except Exception as e: #
get_logger().error(f"Error processing suggestion score {i}",
artifact={"suggestion": suggestion,
"code_suggestions_feedback": code_suggestions_feedback[i]})
suggestion["score"] = 7
suggestion["score_why"] = ""
else:
get_logger().error(f"Could not self-reflect on suggestions. using default score 7")
for i, suggestion in enumerate(data["code_suggestions"]):
suggestion["score"] = 7
suggestion["score_why"] = ""
return data
@staticmethod
def _truncate_if_needed(suggestion):
max_code_suggestion_length = get_settings().get("PR_CODE_SUGGESTIONS.MAX_CODE_SUGGESTION_LENGTH", 0)
suggestion_truncation_message = get_settings().get("PR_CODE_SUGGESTIONS.SUGGESTION_TRUNCATION_MESSAGE", "")
if max_code_suggestion_length > 0:
if len(suggestion['improved_code']) > max_code_suggestion_length:
suggestion['improved_code'] = suggestion['improved_code'][:max_code_suggestion_length]
suggestion['improved_code'] += f"\n{suggestion_truncation_message}"
get_logger().info(f"Truncated suggestion from {len(suggestion['improved_code'])} "
f"characters to {max_code_suggestion_length} characters")
return suggestion
def _prepare_pr_code_suggestions(self, predictions: str) -> Dict:
data = load_yaml(predictions.strip(),
keys_fix_yaml=["relevant_file", "suggestion_content", "existing_code", "improved_code"])
if isinstance(data, list):
data = {'code_suggestions': data}
# remove or edit invalid suggestions
suggestion_list = []
one_sentence_summary_list = []
for i, suggestion in enumerate(data['code_suggestions']):
try:
if (not suggestion or 'one_sentence_summary' not in suggestion or
'label' not in suggestion or 'relevant_file' not in suggestion):
get_logger().debug(f"Skipping suggestion {i + 1}, because it is invalid: {suggestion}")
continue
if suggestion['one_sentence_summary'] in one_sentence_summary_list:
get_logger().debug(f"Skipping suggestion {i + 1}, because it is a duplicate: {suggestion}")
continue
if 'const' in suggestion['suggestion_content'] and 'instead' in suggestion['suggestion_content'] and 'let' in suggestion['suggestion_content']:
get_logger().debug(f"Skipping suggestion {i + 1}, because it uses 'const instead let': {suggestion}")
continue
if ('existing_code' in suggestion) and ('improved_code' in suggestion):
if suggestion['existing_code'] == suggestion['improved_code']:
get_logger().debug(
f"edited improved suggestion {i + 1}, because equal to existing code: {suggestion['existing_code']}")
if get_settings().pr_code_suggestions.commitable_code_suggestions:
suggestion['improved_code'] = "" # we need 'existing_code' to locate the code in the PR
else:
suggestion['existing_code'] = ""
suggestion = self._truncate_if_needed(suggestion)
one_sentence_summary_list.append(suggestion['one_sentence_summary'])
suggestion_list.append(suggestion)
else:
get_logger().info(
f"Skipping suggestion {i + 1}, because it does not contain 'existing_code' or 'improved_code': {suggestion}")
except Exception as e:
get_logger().error(f"Error processing suggestion {i + 1}: {suggestion}, error: {e}")
data['code_suggestions'] = suggestion_list
return data
def push_inline_code_suggestions(self, data):
code_suggestions = []
if not data['code_suggestions']:
get_logger().info('No suggestions found to improve this PR.')
if self.progress_response:
return self.git_provider.edit_comment(self.progress_response, body='No suggestions found to improve this PR.')
else:
return self.git_provider.publish_comment('No suggestions found to improve this PR.')
for d in data['code_suggestions']:
try:
relevant_file = d['relevant_file'].strip()
relevant_lines_start = int(d['relevant_lines_start']) # absolute position
relevant_lines_end = int(d['relevant_lines_end'])
content = d['suggestion_content'].rstrip()
new_code_snippet = d['improved_code'].rstrip()
label = d['label'].strip()
if new_code_snippet:
new_code_snippet = self.dedent_code(relevant_file, relevant_lines_start, new_code_snippet)
if d.get('score'):
body = f"**Suggestion:** {content} [{label}, importance: {d.get('score')}]\n```suggestion\n" + new_code_snippet + "\n```"
else:
body = f"**Suggestion:** {content} [{label}]\n```suggestion\n" + new_code_snippet + "\n```"
code_suggestions.append({'body': body, 'relevant_file': relevant_file,
'relevant_lines_start': relevant_lines_start,
'relevant_lines_end': relevant_lines_end})
except Exception:
get_logger().info(f"Could not parse suggestion: {d}")
is_successful = self.git_provider.publish_code_suggestions(code_suggestions)
if not is_successful:
get_logger().info("Failed to publish code suggestions, trying to publish each suggestion separately")
for code_suggestion in code_suggestions:
self.git_provider.publish_code_suggestions([code_suggestion])
def dedent_code(self, relevant_file, relevant_lines_start, new_code_snippet):
try: # dedent code snippet
self.diff_files = self.git_provider.diff_files if self.git_provider.diff_files \
else self.git_provider.get_diff_files()
original_initial_line = None
for file in self.diff_files:
if file.filename.strip() == relevant_file:
if file.head_file: # in bitbucket, head_file is empty. toDo: fix this
original_initial_line = file.head_file.splitlines()[relevant_lines_start - 1]
break
if original_initial_line:
suggested_initial_line = new_code_snippet.splitlines()[0]
original_initial_spaces = len(original_initial_line) - len(original_initial_line.lstrip())
suggested_initial_spaces = len(suggested_initial_line) - len(suggested_initial_line.lstrip())
delta_spaces = original_initial_spaces - suggested_initial_spaces
if delta_spaces > 0:
new_code_snippet = textwrap.indent(new_code_snippet, delta_spaces * " ").rstrip('\n')
except Exception as e:
get_logger().error(f"Could not dedent code snippet for file {relevant_file}, error: {e}")
return new_code_snippet
def _get_is_extended(self, args: list[str]) -> bool:
"""Check if extended mode should be enabled by the `--extended` flag or automatically according to the configuration"""
if any(["extended" in arg for arg in args]):
get_logger().info("Extended mode is enabled by the `--extended` flag")
return True
if get_settings().pr_code_suggestions.auto_extended_mode:
get_logger().info("Extended mode is enabled automatically based on the configuration toggle")
return True
return False
async def _prepare_prediction_extended(self, model: str) -> dict:
self.patches_diff_list = get_pr_multi_diffs(self.git_provider, self.token_handler, model,
max_calls=get_settings().pr_code_suggestions.max_number_of_calls)
if self.patches_diff_list:
get_logger().info(f"Number of PR chunk calls: {len(self.patches_diff_list)}")
get_logger().debug(f"PR diff:", artifact=self.patches_diff_list)
# parallelize calls to AI:
if get_settings().pr_code_suggestions.parallel_calls:
prediction_list = await asyncio.gather(
*[self._get_prediction(model, patches_diff) for patches_diff in self.patches_diff_list])
self.prediction_list = prediction_list
else:
prediction_list = []
for i, patches_diff in enumerate(self.patches_diff_list):
prediction = await self._get_prediction(model, patches_diff)
prediction_list.append(prediction)
data = {"code_suggestions": []}
for j, predictions in enumerate(prediction_list): # each call adds an element to the list
if "code_suggestions" in predictions:
score_threshold = max(1, get_settings().pr_code_suggestions.suggestions_score_threshold)
for i, prediction in enumerate(predictions["code_suggestions"]):
try:
if get_settings().pr_code_suggestions.self_reflect_on_suggestions:
score = int(prediction["score"])
if score >= score_threshold:
data["code_suggestions"].append(prediction)
else:
get_logger().info(
f"Removing suggestions {i} from call {j}, because score is {score}, and score_threshold is {score_threshold}",
artifact=prediction)
else:
data["code_suggestions"].append(prediction)
except Exception as e:
get_logger().error(f"Error getting PR diff for suggestion {i} in call {j}, error: {e}")
self.data = data
else:
get_logger().error(f"Error getting PR diff")
self.data = data = None
return data
async def rank_suggestions(self, data: List) -> List:
"""
Call a model to rank (sort) code suggestions based on their importance order.
Args:
data (List): A list of code suggestions to be ranked.
Returns:
List: The ranked list of code suggestions.
"""
suggestion_list = []
if not data:
return suggestion_list
for suggestion in data:
suggestion_list.append(suggestion)
data_sorted = [[]] * len(suggestion_list)
if len(suggestion_list) == 1:
return suggestion_list
try:
suggestion_str = ""
for i, suggestion in enumerate(suggestion_list):
suggestion_str += f"suggestion {i + 1}: " + str(suggestion) + '\n\n'
variables = {'suggestion_list': suggestion_list, 'suggestion_str': suggestion_str}
model = get_settings().config.model
environment = Environment(undefined=StrictUndefined)
system_prompt = environment.from_string(get_settings().pr_sort_code_suggestions_prompt.system).render(
variables)
user_prompt = environment.from_string(get_settings().pr_sort_code_suggestions_prompt.user).render(variables)
response, finish_reason = await self.ai_handler.chat_completion(model=model, system=system_prompt,
user=user_prompt)
sort_order = load_yaml(response)
for s in sort_order['Sort Order']:
suggestion_number = s['suggestion number']
importance_order = s['importance order']
data_sorted[importance_order - 1] = suggestion_list[suggestion_number - 1]
if get_settings().pr_code_suggestions.final_clip_factor != 1:
max_len = max(
len(data_sorted),
get_settings().pr_code_suggestions.num_code_suggestions,
get_settings().pr_code_suggestions.num_code_suggestions_per_chunk,
)
new_len = int(0.5 + max_len * get_settings().pr_code_suggestions.final_clip_factor)
if new_len < len(data_sorted):
data_sorted = data_sorted[:new_len]
except Exception as e:
if get_settings().config.verbosity_level >= 1:
get_logger().info(f"Could not sort suggestions, error: {e}")
data_sorted = suggestion_list
return data_sorted
def generate_summarized_suggestions(self, data: Dict) -> str:
try:
pr_body = "## PR Code Suggestions ✨\n\n"
if len(data.get('code_suggestions', [])) == 0:
pr_body += "No suggestions found to improve this PR."
return pr_body
language_extension_map_org = get_settings().language_extension_map_org
extension_to_language = {}
for language, extensions in language_extension_map_org.items():
for ext in extensions:
extension_to_language[ext] = language
pr_body = "## PR Code Suggestions ✨\n\n"
pr_body += "<table>"
header = f"Suggestion"
delta = 66
header += "&nbsp; " * delta
if get_settings().pr_code_suggestions.self_reflect_on_suggestions:
pr_body += f"""<thead><tr><td>Category</td><td align=left>{header}</td><td align=center>Score</td></tr>"""
else:
pr_body += f"""<thead><tr><td>Category</td><td align=left>{header}</td></tr>"""
pr_body += """<tbody>"""
suggestions_labels = dict()
# add all suggestions related to each label
for suggestion in data['code_suggestions']:
label = suggestion['label'].strip().strip("'").strip('"')
if label not in suggestions_labels:
suggestions_labels[label] = []
suggestions_labels[label].append(suggestion)
# sort suggestions_labels by the suggestion with the highest score
if get_settings().pr_code_suggestions.self_reflect_on_suggestions:
suggestions_labels = dict(sorted(suggestions_labels.items(), key=lambda x: max([s['score'] for s in x[1]]), reverse=True))
# sort the suggestions inside each label group by score
for label, suggestions in suggestions_labels.items():
suggestions_labels[label] = sorted(suggestions, key=lambda x: x['score'], reverse=True)
for label, suggestions in suggestions_labels.items():
num_suggestions=len(suggestions)
pr_body += f"""<tr><td rowspan={num_suggestions}><strong>{label.capitalize()}</strong></td>\n"""
for i, suggestion in enumerate(suggestions):
relevant_file = suggestion['relevant_file'].strip()
relevant_lines_start = int(suggestion['relevant_lines_start'])
relevant_lines_end = int(suggestion['relevant_lines_end'])
range_str = ""
if relevant_lines_start == relevant_lines_end:
range_str = f"[{relevant_lines_start}]"
else:
range_str = f"[{relevant_lines_start}-{relevant_lines_end}]"
try:
code_snippet_link = self.git_provider.get_line_link(relevant_file, relevant_lines_start,
relevant_lines_end)
except:
code_snippet_link = ""
# add html table for each suggestion
suggestion_content = suggestion['suggestion_content'].rstrip().rstrip()
suggestion_content = insert_br_after_x_chars(suggestion_content, 90)
# pr_body += f"<tr><td><details><summary>{suggestion_content}</summary>"
existing_code = suggestion['existing_code'].rstrip()+"\n"
improved_code = suggestion['improved_code'].rstrip()+"\n"
diff = difflib.unified_diff(existing_code.split('\n'),
improved_code.split('\n'), n=999)
patch_orig = "\n".join(diff)
patch = "\n".join(patch_orig.splitlines()[5:]).strip('\n')
example_code = ""
example_code += f"```diff\n{patch}\n```\n"
if i==0:
pr_body += f"""<td>\n\n"""
else:
pr_body += f"""<tr><td>\n\n"""
suggestion_summary = suggestion['one_sentence_summary'].strip().rstrip('.')
if '`' in suggestion_summary:
suggestion_summary = replace_code_tags(suggestion_summary)
pr_body += f"""\n\n<details><summary>{suggestion_summary}</summary>\n\n___\n\n"""
pr_body += f"""
**{suggestion_content}**
[{relevant_file} {range_str}]({code_snippet_link})
{example_code}
"""
if get_settings().pr_code_suggestions.self_reflect_on_suggestions:
pr_body +=f"\n\n<details><summary><b>Suggestion importance[1-10]: {suggestion['score']}</b></summary>\n\n"
pr_body += f"Why: {suggestion['score_why']}\n\n"
pr_body += f"</details>"
pr_body += f"</details>"
# # add another column for 'score'
if get_settings().pr_code_suggestions.self_reflect_on_suggestions:
pr_body += f"</td><td align=center>{suggestion['score']}\n\n"
pr_body += f"</td></tr>"
# pr_body += "</details>"
# pr_body += """</td></tr>"""
pr_body += """</tr></tbody></table>"""
return pr_body
except Exception as e:
get_logger().info(f"Failed to publish summarized code suggestions, error: {e}")
return ""
async def self_reflect_on_suggestions(self, suggestion_list: List, patches_diff: str) -> str:
if not suggestion_list:
return ""
try:
suggestion_str = ""
for i, suggestion in enumerate(suggestion_list):
suggestion_str += f"suggestion {i + 1}: " + str(suggestion) + '\n\n'
variables = {'suggestion_list': suggestion_list,
'suggestion_str': suggestion_str,
"diff": patches_diff,
'num_code_suggestions': len(suggestion_list)}
model = get_settings().config.model
environment = Environment(undefined=StrictUndefined)
system_prompt_reflect = environment.from_string(get_settings().pr_code_suggestions_reflect_prompt.system).render(
variables)
user_prompt_reflect = environment.from_string(get_settings().pr_code_suggestions_reflect_prompt.user).render(variables)
with get_logger().contextualize(command="self_reflect_on_suggestions"):
response_reflect, finish_reason_reflect = await self.ai_handler.chat_completion(model=model,
system=system_prompt_reflect,
user=user_prompt_reflect)
except Exception as e:
get_logger().info(f"Could not reflect on suggestions, error: {e}")
return ""
return response_reflect