mirror of
https://github.com/qodo-ai/pr-agent.git
synced 2025-07-02 03:40:38 +08:00

Co-authored-by: codiumai-pr-agent-pro[bot] <151058649+codiumai-pr-agent-pro[bot]@users.noreply.github.com>
259 lines
12 KiB
Python
259 lines
12 KiB
Python
import os
|
|
import requests
|
|
import litellm
|
|
import openai
|
|
from litellm import acompletion
|
|
from tenacity import retry, retry_if_exception_type, stop_after_attempt
|
|
|
|
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
|
|
from pr_agent.config_loader import get_settings
|
|
from pr_agent.log import get_logger
|
|
|
|
OPENAI_RETRIES = 5
|
|
|
|
|
|
class LiteLLMAIHandler(BaseAiHandler):
|
|
"""
|
|
This class handles interactions with the OpenAI API for chat completions.
|
|
It initializes the API key and other settings from a configuration file,
|
|
and provides a method for performing chat completions using the OpenAI ChatCompletion API.
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""
|
|
Initializes the OpenAI API key and other settings from a configuration file.
|
|
Raises a ValueError if the OpenAI key is missing.
|
|
"""
|
|
self.azure = False
|
|
self.api_base = None
|
|
self.repetition_penalty = None
|
|
if get_settings().get("OPENAI.KEY", None):
|
|
openai.api_key = get_settings().openai.key
|
|
litellm.openai_key = get_settings().openai.key
|
|
elif 'OPENAI_API_KEY' not in os.environ:
|
|
litellm.api_key = "dummy_key"
|
|
if get_settings().get("aws.AWS_ACCESS_KEY_ID"):
|
|
assert get_settings().aws.AWS_SECRET_ACCESS_KEY and get_settings().aws.AWS_REGION_NAME, "AWS credentials are incomplete"
|
|
os.environ["AWS_ACCESS_KEY_ID"] = get_settings().aws.AWS_ACCESS_KEY_ID
|
|
os.environ["AWS_SECRET_ACCESS_KEY"] = get_settings().aws.AWS_SECRET_ACCESS_KEY
|
|
os.environ["AWS_REGION_NAME"] = get_settings().aws.AWS_REGION_NAME
|
|
if get_settings().get("litellm.use_client"):
|
|
litellm_token = get_settings().get("litellm.LITELLM_TOKEN")
|
|
assert litellm_token, "LITELLM_TOKEN is required"
|
|
os.environ["LITELLM_TOKEN"] = litellm_token
|
|
litellm.use_client = True
|
|
if get_settings().get("LITELLM.DROP_PARAMS", None):
|
|
litellm.drop_params = get_settings().litellm.drop_params
|
|
if get_settings().get("LITELLM.SUCCESS_CALLBACK", None):
|
|
litellm.success_callback = get_settings().litellm.success_callback
|
|
if get_settings().get("LITELLM.FAILURE_CALLBACK", None):
|
|
litellm.failure_callback = get_settings().litellm.failure_callback
|
|
if get_settings().get("LITELLM.SERVICE_CALLBACK", None):
|
|
litellm.service_callback = get_settings().litellm.service_callback
|
|
if get_settings().get("OPENAI.ORG", None):
|
|
litellm.organization = get_settings().openai.org
|
|
if get_settings().get("OPENAI.API_TYPE", None):
|
|
if get_settings().openai.api_type == "azure":
|
|
self.azure = True
|
|
litellm.azure_key = get_settings().openai.key
|
|
if get_settings().get("OPENAI.API_VERSION", None):
|
|
litellm.api_version = get_settings().openai.api_version
|
|
if get_settings().get("OPENAI.API_BASE", None):
|
|
litellm.api_base = get_settings().openai.api_base
|
|
if get_settings().get("ANTHROPIC.KEY", None):
|
|
litellm.anthropic_key = get_settings().anthropic.key
|
|
if get_settings().get("COHERE.KEY", None):
|
|
litellm.cohere_key = get_settings().cohere.key
|
|
if get_settings().get("GROQ.KEY", None):
|
|
litellm.api_key = get_settings().groq.key
|
|
if get_settings().get("REPLICATE.KEY", None):
|
|
litellm.replicate_key = get_settings().replicate.key
|
|
if get_settings().get("HUGGINGFACE.KEY", None):
|
|
litellm.huggingface_key = get_settings().huggingface.key
|
|
if get_settings().get("HUGGINGFACE.API_BASE", None) and 'huggingface' in get_settings().config.model:
|
|
litellm.api_base = get_settings().huggingface.api_base
|
|
self.api_base = get_settings().huggingface.api_base
|
|
if get_settings().get("OLLAMA.API_BASE", None):
|
|
litellm.api_base = get_settings().ollama.api_base
|
|
self.api_base = get_settings().ollama.api_base
|
|
if get_settings().get("HUGGINGFACE.REPETITION_PENALTY", None):
|
|
self.repetition_penalty = float(get_settings().huggingface.repetition_penalty)
|
|
if get_settings().get("VERTEXAI.VERTEX_PROJECT", None):
|
|
litellm.vertex_project = get_settings().vertexai.vertex_project
|
|
litellm.vertex_location = get_settings().get(
|
|
"VERTEXAI.VERTEX_LOCATION", None
|
|
)
|
|
def prepare_logs(self, response, system, user, resp, finish_reason):
|
|
response_log = response.dict().copy()
|
|
response_log['system'] = system
|
|
response_log['user'] = user
|
|
response_log['output'] = resp
|
|
response_log['finish_reason'] = finish_reason
|
|
if hasattr(self, 'main_pr_language'):
|
|
response_log['main_pr_language'] = self.main_pr_language
|
|
else:
|
|
response_log['main_pr_language'] = 'unknown'
|
|
return response_log
|
|
|
|
def add_litellm_callbacks(selfs, kwargs) -> dict:
|
|
captured_extra = []
|
|
|
|
def capture_logs(message):
|
|
# Parsing the log message and context
|
|
record = message.record
|
|
log_entry = {}
|
|
if record.get('extra', None).get('command', None) is not None:
|
|
log_entry.update({"command": record['extra']["command"]})
|
|
if record.get('extra', {}).get('pr_url', None) is not None:
|
|
log_entry.update({"pr_url": record['extra']["pr_url"]})
|
|
|
|
# Append the log entry to the captured_logs list
|
|
captured_extra.append(log_entry)
|
|
|
|
# Adding the custom sink to Loguru
|
|
handler_id = get_logger().add(capture_logs)
|
|
get_logger().debug("Capturing logs for litellm callbacks")
|
|
get_logger().remove(handler_id)
|
|
|
|
context = captured_extra[0] if len(captured_extra) > 0 else None
|
|
|
|
command = context.get("command", "unknown")
|
|
pr_url = context.get("pr_url", "unknown")
|
|
git_provider = get_settings().config.git_provider
|
|
|
|
metadata = dict()
|
|
callbacks = litellm.success_callback + litellm.failure_callback + litellm.service_callback
|
|
if "langfuse" in callbacks:
|
|
metadata.update({
|
|
"trace_name": command,
|
|
"tags": [git_provider, command],
|
|
"trace_metadata": {
|
|
"command": command,
|
|
"pr_url": pr_url,
|
|
},
|
|
})
|
|
if "langsmith" in callbacks:
|
|
metadata.update({
|
|
"run_name": command,
|
|
"tags": [git_provider, command],
|
|
"extra": {
|
|
"metadata": {
|
|
"command": command,
|
|
"pr_url": pr_url,
|
|
}
|
|
},
|
|
})
|
|
|
|
# Adding the captured logs to the kwargs
|
|
kwargs["metadata"] = metadata
|
|
|
|
return kwargs
|
|
|
|
@property
|
|
def deployment_id(self):
|
|
"""
|
|
Returns the deployment ID for the OpenAI API.
|
|
"""
|
|
return get_settings().get("OPENAI.DEPLOYMENT_ID", None)
|
|
|
|
@retry(
|
|
retry=retry_if_exception_type((openai.APIError, openai.APIConnectionError, openai.APITimeoutError)), # No retry on RateLimitError
|
|
stop=stop_after_attempt(OPENAI_RETRIES)
|
|
)
|
|
async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2, img_path: str = None):
|
|
try:
|
|
resp, finish_reason = None, None
|
|
deployment_id = self.deployment_id
|
|
if self.azure:
|
|
model = 'azure/' + model
|
|
if 'claude' in model and not system:
|
|
system = "No system prompt provided"
|
|
get_logger().warning(
|
|
"Empty system prompt for claude model. Adding a newline character to prevent OpenAI API error.")
|
|
messages = [{"role": "system", "content": system}, {"role": "user", "content": user}]
|
|
|
|
if img_path:
|
|
try:
|
|
# check if the image link is alive
|
|
r = requests.head(img_path, allow_redirects=True)
|
|
if r.status_code == 404:
|
|
error_msg = f"The image link is not [alive](img_path).\nPlease repost the original image as a comment, and send the question again with 'quote reply' (see [instructions](https://pr-agent-docs.codium.ai/tools/ask/#ask-on-images-using-the-pr-code-as-context))."
|
|
get_logger().error(error_msg)
|
|
return f"{error_msg}", "error"
|
|
except Exception as e:
|
|
get_logger().error(f"Error fetching image: {img_path}", e)
|
|
return f"Error fetching image: {img_path}", "error"
|
|
messages[1]["content"] = [{"type": "text", "text": messages[1]["content"]},
|
|
{"type": "image_url", "image_url": {"url": img_path}}]
|
|
|
|
# Currently O1 does not support separate system and user prompts
|
|
O1_MODEL_PREFIX = 'o1-'
|
|
model_type = model.split('/')[-1] if '/' in model else model
|
|
if model_type.startswith(O1_MODEL_PREFIX):
|
|
user = f"{system}\n\n\n{user}"
|
|
system = ""
|
|
get_logger().info(f"Using O1 model, combining system and user prompts")
|
|
messages = [{"role": "user", "content": user}]
|
|
kwargs = {
|
|
"model": model,
|
|
"deployment_id": deployment_id,
|
|
"messages": messages,
|
|
"timeout": get_settings().config.ai_timeout,
|
|
"api_base": self.api_base,
|
|
}
|
|
else:
|
|
kwargs = {
|
|
"model": model,
|
|
"deployment_id": deployment_id,
|
|
"messages": messages,
|
|
"temperature": temperature,
|
|
"timeout": get_settings().config.ai_timeout,
|
|
"api_base": self.api_base,
|
|
}
|
|
|
|
if get_settings().litellm.get("enable_callbacks", False):
|
|
kwargs = self.add_litellm_callbacks(kwargs)
|
|
|
|
seed = get_settings().config.get("seed", -1)
|
|
if temperature > 0 and seed >= 0:
|
|
raise ValueError(f"Seed ({seed}) is not supported with temperature ({temperature}) > 0")
|
|
elif seed >= 0:
|
|
get_logger().info(f"Using fixed seed of {seed}")
|
|
kwargs["seed"] = seed
|
|
|
|
if self.repetition_penalty:
|
|
kwargs["repetition_penalty"] = self.repetition_penalty
|
|
|
|
get_logger().debug("Prompts", artifact={"system": system, "user": user})
|
|
|
|
if get_settings().config.verbosity_level >= 2:
|
|
get_logger().info(f"\nSystem prompt:\n{system}")
|
|
get_logger().info(f"\nUser prompt:\n{user}")
|
|
|
|
response = await acompletion(**kwargs)
|
|
except (openai.APIError, openai.APITimeoutError) as e:
|
|
get_logger().warning(f"Error during LLM inference: {e}")
|
|
raise
|
|
except (openai.RateLimitError) as e:
|
|
get_logger().error(f"Rate limit error during LLM inference: {e}")
|
|
raise
|
|
except (Exception) as e:
|
|
get_logger().warning(f"Unknown error during LLM inference: {e}")
|
|
raise openai.APIError from e
|
|
if response is None or len(response["choices"]) == 0:
|
|
raise openai.APIError
|
|
else:
|
|
resp = response["choices"][0]['message']['content']
|
|
finish_reason = response["choices"][0]["finish_reason"]
|
|
get_logger().debug(f"\nAI response:\n{resp}")
|
|
|
|
# log the full response for debugging
|
|
response_log = self.prepare_logs(response, system, user, resp, finish_reason)
|
|
get_logger().debug("Full_response", artifact=response_log)
|
|
|
|
# for CLI debugging
|
|
if get_settings().config.verbosity_level >= 2:
|
|
get_logger().info(f"\nAI response:\n{resp}")
|
|
|
|
return resp, finish_reason
|