Files
pr-agent/pr_agent/tools/pr_questions.py

83 lines
3.7 KiB
Python

import copy
import logging
from jinja2 import Environment, StrictUndefined
from pr_agent.algo.ai_handler import AiHandler
from pr_agent.algo.pr_processing import get_pr_diff, retry_with_fallback_models
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import get_git_provider
from pr_agent.git_providers.git_provider import get_main_pr_language
class PRQuestions:
def __init__(self, pr_url: str, args=None):
question_str = self.parse_args(args)
self.git_provider = get_git_provider()(pr_url)
self.main_pr_language = get_main_pr_language(
self.git_provider.get_languages(), self.git_provider.get_files()
)
self.ai_handler = AiHandler()
self.question_str = question_str
self.vars = {
"title": self.git_provider.pr.title,
"branch": self.git_provider.get_pr_branch(),
"description": self.git_provider.get_pr_description(),
"language": self.main_pr_language,
"diff": "", # empty diff for initial calculation
"questions": self.question_str,
}
self.token_handler = TokenHandler(self.git_provider.pr,
self.vars,
get_settings().pr_questions_prompt.system,
get_settings().pr_questions_prompt.user)
self.patches_diff = None
self.prediction = None
def parse_args(self, args):
if args and len(args) > 0:
question_str = " ".join(args)
else:
question_str = ""
return question_str
async def run(self):
logging.info('Answering a PR question...')
if get_settings().config.publish_output:
self.git_provider.publish_comment("Preparing answer...", is_temporary=True)
await retry_with_fallback_models(self._prepare_prediction)
logging.info('Preparing answer...')
pr_comment = self._prepare_pr_answer()
if get_settings().config.publish_output:
logging.info('Pushing answer...')
self.git_provider.publish_comment(pr_comment)
self.git_provider.remove_initial_comment()
return ""
async def _prepare_prediction(self, model: str):
logging.info('Getting PR diff...')
self.patches_diff = get_pr_diff(self.git_provider, self.token_handler, model)
logging.info('Getting AI prediction...')
self.prediction = await self._get_prediction(model)
async def _get_prediction(self, model: str):
variables = copy.deepcopy(self.vars)
variables["diff"] = self.patches_diff # update diff
environment = Environment(undefined=StrictUndefined)
system_prompt = environment.from_string(get_settings().pr_questions_prompt.system).render(variables)
user_prompt = environment.from_string(get_settings().pr_questions_prompt.user).render(variables)
if get_settings().config.verbosity_level >= 2:
logging.info(f"\nSystem prompt:\n{system_prompt}")
logging.info(f"\nUser prompt:\n{user_prompt}")
response, finish_reason = await self.ai_handler.chat_completion(model=model, temperature=0.2,
system=system_prompt, user=user_prompt)
return response
def _prepare_pr_answer(self) -> str:
answer_str = f"Question: {self.question_str}\n\n"
answer_str += f"Answer:\n{self.prediction.strip()}\n\n"
if get_settings().config.verbosity_level >= 2:
logging.info(f"answer_str:\n{answer_str}")
return answer_str