Files
pr-agent/pr_agent/tools/pr_reviewer.py

405 lines
20 KiB
Python

import copy
import datetime
from collections import OrderedDict
from functools import partial
from typing import List, Tuple
from jinja2 import Environment, StrictUndefined
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
from pr_agent.algo.ai_handlers.litellm_ai_handler import LiteLLMAIHandler
from pr_agent.algo.pr_processing import get_pr_diff, retry_with_fallback_models
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.algo.utils import convert_to_markdown, load_yaml, ModelType
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import get_git_provider
from pr_agent.git_providers.git_provider import IncrementalPR, get_main_pr_language
from pr_agent.log import get_logger
from pr_agent.servers.help import HelpMessage
class PRReviewer:
"""
The PRReviewer class is responsible for reviewing a pull request and generating feedback using an AI model.
"""
def __init__(self, pr_url: str, is_answer: bool = False, is_auto: bool = False, args: list = None,
ai_handler: partial[BaseAiHandler,] = LiteLLMAIHandler):
"""
Initialize the PRReviewer object with the necessary attributes and objects to review a pull request.
Args:
pr_url (str): The URL of the pull request to be reviewed.
is_answer (bool, optional): Indicates whether the review is being done in answer mode. Defaults to False.
is_auto (bool, optional): Indicates whether the review is being done in automatic mode. Defaults to False.
ai_handler (BaseAiHandler): The AI handler to be used for the review. Defaults to None.
args (list, optional): List of arguments passed to the PRReviewer class. Defaults to None.
"""
self.args = args
self.parse_args(args) # -i command
self.git_provider = get_git_provider()(pr_url, incremental=self.incremental)
self.main_language = get_main_pr_language(
self.git_provider.get_languages(), self.git_provider.get_files()
)
self.pr_url = pr_url
self.is_answer = is_answer
self.is_auto = is_auto
if self.is_answer and not self.git_provider.is_supported("get_issue_comments"):
raise Exception(f"Answer mode is not supported for {get_settings().config.git_provider} for now")
self.ai_handler = ai_handler()
self.patches_diff = None
self.prediction = None
answer_str, question_str = self._get_user_answers()
self.vars = {
"title": self.git_provider.pr.title,
"branch": self.git_provider.get_pr_branch(),
"description": self.git_provider.get_pr_description(),
"language": self.main_language,
"diff": "", # empty diff for initial calculation
"require_score": get_settings().pr_reviewer.require_score_review,
"require_tests": get_settings().pr_reviewer.require_tests_review,
"require_focused": get_settings().pr_reviewer.require_focused_review,
"require_estimate_effort_to_review": get_settings().pr_reviewer.require_estimate_effort_to_review,
'num_code_suggestions': get_settings().pr_reviewer.num_code_suggestions,
'question_str': question_str,
'answer_str': answer_str,
"extra_instructions": get_settings().pr_reviewer.extra_instructions,
"commit_messages_str": self.git_provider.get_commit_messages(),
"custom_labels": "",
"enable_custom_labels": get_settings().config.enable_custom_labels,
}
self.token_handler = TokenHandler(
self.git_provider.pr,
self.vars,
get_settings().pr_review_prompt.system,
get_settings().pr_review_prompt.user
)
def parse_args(self, args: List[str]) -> None:
"""
Parse the arguments passed to the PRReviewer class and set the 'incremental' attribute accordingly.
Args:
args: A list of arguments passed to the PRReviewer class.
Returns:
None
"""
is_incremental = False
if args and len(args) >= 1:
arg = args[0]
if arg == "-i":
is_incremental = True
self.incremental = IncrementalPR(is_incremental)
async def run(self) -> None:
try:
if self.incremental.is_incremental and not self._can_run_incremental_review():
return None
if isinstance(self.args, list) and self.args and self.args[0] == 'auto_approve':
get_logger().info(f'Auto approve flow PR: {self.pr_url} ...')
self.auto_approve_logic()
return None
get_logger().info(f'Reviewing PR: {self.pr_url} ...')
relevant_configs = {'pr_reviewer': dict(get_settings().pr_reviewer),
'config': dict(get_settings().config)}
get_logger().debug("Relevant configs", configs=relevant_configs)
if get_settings().config.publish_output:
self.git_provider.publish_comment("Preparing review...", is_temporary=True)
await retry_with_fallback_models(self._prepare_prediction, model_type=ModelType.TURBO)
if not self.prediction:
self.git_provider.remove_initial_comment()
return None
pr_review = self._prepare_pr_review()
get_logger().debug(f"PR output", review=pr_review)
if get_settings().config.publish_output:
previous_review_comment = self._get_previous_review_comment()
# publish the review
if get_settings().pr_reviewer.persistent_comment and not self.incremental.is_incremental:
self.git_provider.publish_persistent_comment(pr_review,
initial_header="## PR Review",
update_header=True)
else:
self.git_provider.publish_comment(pr_review)
self.git_provider.remove_initial_comment()
if previous_review_comment:
self._remove_previous_review_comment(previous_review_comment)
if get_settings().pr_reviewer.inline_code_comments:
self._publish_inline_code_comments()
except Exception as e:
get_logger().error(f"Failed to review PR: {e}")
async def _prepare_prediction(self, model: str) -> None:
self.patches_diff = get_pr_diff(self.git_provider, self.token_handler, model)
if self.patches_diff:
get_logger().debug(f"PR diff", diff=self.patches_diff)
self.prediction = await self._get_prediction(model)
else:
get_logger().error(f"Error getting PR diff")
self.prediction = None
async def _get_prediction(self, model: str) -> str:
"""
Generate an AI prediction for the pull request review.
Args:
model: A string representing the AI model to be used for the prediction.
Returns:
A string representing the AI prediction for the pull request review.
"""
variables = copy.deepcopy(self.vars)
variables["diff"] = self.patches_diff # update diff
environment = Environment(undefined=StrictUndefined)
system_prompt = environment.from_string(get_settings().pr_review_prompt.system).render(variables)
user_prompt = environment.from_string(get_settings().pr_review_prompt.user).render(variables)
response, finish_reason = await self.ai_handler.chat_completion(
model=model,
temperature=0.2,
system=system_prompt,
user=user_prompt
)
get_logger().debug(f"\nAI response:\n{response}")
return response
def _prepare_pr_review(self) -> str:
"""
Prepare the PR review by processing the AI prediction and generating a markdown-formatted text that summarizes
the feedback.
"""
data = load_yaml(self.prediction.strip())
if 'code_feedback' in data:
code_feedback = data['code_feedback']
# Filter out code suggestions that can be submitted as inline comments
if get_settings().pr_reviewer.inline_code_comments:
del data['code_feedback']
else:
for suggestion in code_feedback:
if ('relevant_file' in suggestion) and (not suggestion['relevant_file'].startswith('``')):
suggestion['relevant_file'] = f"``{suggestion['relevant_file']}``"
if 'relevant_line' not in suggestion:
suggestion['relevant_line'] = ''
relevant_line_str = suggestion['relevant_line'].split('\n')[0]
# removing '+'
suggestion['relevant_line'] = relevant_line_str.lstrip('+').strip()
# try to add line numbers link to code suggestions
if hasattr(self.git_provider, 'generate_link_to_relevant_line_number'):
link = self.git_provider.generate_link_to_relevant_line_number(suggestion)
if link:
suggestion['relevant_line'] = f"[{suggestion['relevant_line']}]({link})"
else:
pass
# Add incremental review section
if self.incremental.is_incremental:
last_commit_url = f"{self.git_provider.get_pr_url()}/commits/" \
f"{self.git_provider.incremental.first_new_commit_sha}"
last_commit_msg = self.incremental.commits_range[0].commit.message if self.incremental.commits_range else ""
incremental_review_markdown_text = f"Starting from commit {last_commit_url}"
if last_commit_msg:
replacement = last_commit_msg.splitlines(keepends=False)[0].replace('_', r'\_')
incremental_review_markdown_text += f" \n_({replacement})_"
data = OrderedDict(data)
data.update({'Incremental PR Review': {
"⏮️ Review for commits since previous PR-Agent review": incremental_review_markdown_text}})
data.move_to_end('Incremental PR Review', last=False)
markdown_text = convert_to_markdown(data, self.git_provider.is_supported("gfm_markdown"))
# Add help text if gfm_markdown is supported
if self.git_provider.is_supported("gfm_markdown") and get_settings().pr_reviewer.enable_help_text:
markdown_text += "<hr>\n\n<details> <summary><strong>✨ Review tool usage guide:</strong></summary><hr> \n\n"
markdown_text += HelpMessage.get_review_usage_guide()
markdown_text += "\n</details>\n"
# Add custom labels from the review prediction (effort, security)
self.set_review_labels(data)
if markdown_text == None or len(markdown_text) == 0:
markdown_text = ""
return markdown_text
def _publish_inline_code_comments(self) -> None:
"""
Publishes inline comments on a pull request with code suggestions generated by the AI model.
"""
if get_settings().pr_reviewer.num_code_suggestions == 0:
return
data = load_yaml(self.prediction.strip(),
keys_fix_yaml=["estimated_effort_to_review_[1-5]:", "security_concerns:", "possible_issues:",
"relevant_file:", "relevant_line:", "suggestion:"])
comments: List[str] = []
for suggestion in data.get('PR Feedback', {}).get('Code feedback', []):
relevant_file = suggestion.get('relevant_file', '').strip()
relevant_line_in_file = suggestion.get('relevant_line', '').strip()
content = suggestion.get('suggestion', '')
if not relevant_file or not relevant_line_in_file or not content:
get_logger().info("Skipping inline comment with missing file/line/content")
continue
if self.git_provider.is_supported("create_inline_comment"):
comment = self.git_provider.create_inline_comment(content, relevant_file, relevant_line_in_file)
if comment:
comments.append(comment)
else:
self.git_provider.publish_inline_comment(content, relevant_file, relevant_line_in_file)
if comments:
self.git_provider.publish_inline_comments(comments)
def _get_user_answers(self) -> Tuple[str, str]:
"""
Retrieves the question and answer strings from the discussion messages related to a pull request.
Returns:
A tuple containing the question and answer strings.
"""
question_str = ""
answer_str = ""
if self.is_answer:
discussion_messages = self.git_provider.get_issue_comments()
for message in discussion_messages.reversed:
if "Questions to better understand the PR:" in message.body:
question_str = message.body
elif '/answer' in message.body:
answer_str = message.body
if answer_str and question_str:
break
return question_str, answer_str
def _get_previous_review_comment(self):
"""
Get the previous review comment if it exists.
"""
try:
if get_settings().pr_reviewer.remove_previous_review_comment and hasattr(self.git_provider, "get_previous_review"):
return self.git_provider.get_previous_review(
full=not self.incremental.is_incremental,
incremental=self.incremental.is_incremental,
)
except Exception as e:
get_logger().exception(f"Failed to get previous review comment, error: {e}")
def _remove_previous_review_comment(self, comment):
"""
Remove the previous review comment if it exists.
"""
try:
if get_settings().pr_reviewer.remove_previous_review_comment and comment:
self.git_provider.remove_comment(comment)
except Exception as e:
get_logger().exception(f"Failed to remove previous review comment, error: {e}")
def _can_run_incremental_review(self) -> bool:
"""Checks if we can run incremental review according the various configurations and previous review"""
# checking if running is auto mode but there are no new commits
if self.is_auto and not self.incremental.first_new_commit_sha:
get_logger().info(f"Incremental review is enabled for {self.pr_url} but there are no new commits")
return False
# checking if there are enough commits to start the review
num_new_commits = len(self.incremental.commits_range)
num_commits_threshold = get_settings().pr_reviewer.minimal_commits_for_incremental_review
not_enough_commits = num_new_commits < num_commits_threshold
# checking if the commits are not too recent to start the review
recent_commits_threshold = datetime.datetime.now() - datetime.timedelta(
minutes=get_settings().pr_reviewer.minimal_minutes_for_incremental_review
)
last_seen_commit_date = (
self.incremental.last_seen_commit.commit.author.date if self.incremental.last_seen_commit else None
)
all_commits_too_recent = (
last_seen_commit_date > recent_commits_threshold if self.incremental.last_seen_commit else False
)
# check all the thresholds or just one to start the review
condition = any if get_settings().pr_reviewer.require_all_thresholds_for_incremental_review else all
if condition((not_enough_commits, all_commits_too_recent)):
get_logger().info(
f"Incremental review is enabled for {self.pr_url} but didn't pass the threshold check to run:"
f"\n* Number of new commits = {num_new_commits} (threshold is {num_commits_threshold})"
f"\n* Last seen commit date = {last_seen_commit_date} (threshold is {recent_commits_threshold})"
)
return False
return True
def set_review_labels(self, data):
if (get_settings().pr_reviewer.enable_review_labels_security or
get_settings().pr_reviewer.enable_review_labels_effort):
try:
review_labels = []
if get_settings().pr_reviewer.enable_review_labels_effort:
estimated_effort = data['review']['estimated_effort_to_review_[1-5]']
estimated_effort_number = int(estimated_effort.split(',')[0])
if 1 <= estimated_effort_number <= 5: # 1, because ...
review_labels.append(f'Review effort [1-5]: {estimated_effort_number}')
if get_settings().pr_reviewer.enable_review_labels_security:
security_concerns = data['review']['security_concerns'] # yes, because ...
security_concerns_bool = 'yes' in security_concerns.lower() or 'true' in security_concerns.lower()
if security_concerns_bool:
review_labels.append('Possible security concern')
current_labels = self.git_provider.get_pr_labels()
if current_labels:
current_labels_filtered = [label for label in current_labels if
not label.lower().startswith('review effort [1-5]:') and not label.lower().startswith(
'possible security concern')]
else:
current_labels_filtered = []
if current_labels or review_labels:
get_logger().debug(f"Current labels:\n{current_labels}")
get_logger().info(f"Setting review labels:\n{review_labels + current_labels_filtered}")
self.git_provider.publish_labels(review_labels + current_labels_filtered)
except Exception as e:
get_logger().error(f"Failed to set review labels, error: {e}")
def auto_approve_logic(self):
"""
Auto-approve a pull request if it meets the conditions for auto-approval.
"""
if get_settings().pr_reviewer.enable_auto_approval:
maximal_review_effort = get_settings().pr_reviewer.maximal_review_effort
if maximal_review_effort < 5:
current_labels = self.git_provider.get_pr_labels()
for label in current_labels:
if label.lower().startswith('review effort [1-5]:'):
effort = int(label.split(':')[1].strip())
if effort > maximal_review_effort:
get_logger().info(
f"Auto-approve error: PR review effort ({effort}) is higher than the maximal review effort "
f"({maximal_review_effort}) allowed")
self.git_provider.publish_comment(
f"Auto-approve error: PR review effort ({effort}) is higher than the maximal review effort "
f"({maximal_review_effort}) allowed")
return
is_auto_approved = self.git_provider.auto_approve()
if is_auto_approved:
get_logger().info("Auto-approved PR")
self.git_provider.publish_comment("Auto-approved PR")
else:
get_logger().info("Auto-approval option is disabled")
self.git_provider.publish_comment("Auto-approval option for PR-Agent is disabled. "
"You can enable it via a [configuration file](https://github.com/Codium-ai/pr-agent/blob/main/docs/REVIEW.md#auto-approval-1)")