Files
pr-agent/pr_agent/algo/ai_handlers/langchain_ai_handler.py
ryan b28f66aaa0 1. update LangChainOpenAIHandler to support langchain version 0.2
2. read openai_api_base from settings for llms that compatible with openai
2024-06-06 22:27:01 +08:00

74 lines
3.3 KiB
Python

try:
from langchain_openai import ChatOpenAI, AzureChatOpenAI
from langchain_core.messages import SystemMessage, HumanMessage
except: # we don't enforce langchain as a dependency, so if it's not installed, just move on
pass
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
from pr_agent.config_loader import get_settings
from pr_agent.log import get_logger
from openai import APIError, RateLimitError, Timeout
from retry import retry
import functools
OPENAI_RETRIES = 5
class LangChainOpenAIHandler(BaseAiHandler):
def __init__(self):
# Initialize OpenAIHandler specific attributes here
super().__init__()
self.azure = get_settings().get("OPENAI.API_TYPE", "").lower() == "azure"
try:
if self.azure:
# using a partial function so we can set the deployment_id later to support fallback_deployments
# but still need to access the other settings now so we can raise a proper exception if they're missing
self._chat = functools.partial(
lambda **kwargs: AzureChatOpenAI(**kwargs),
openai_api_key=get_settings().openai.key,
openai_api_base=get_settings().openai.api_base,
openai_api_version=get_settings().openai.api_version,
)
else:
# for llms that compatible with openai, should use custom api base
openai_api_base = get_settings().get("OPENAI.API_BASE", None)
if openai_api_base is None or len(openai_api_base) == 0:
self._chat = ChatOpenAI(openai_api_key=get_settings().openai.key)
else:
self._chat = ChatOpenAI(openai_api_key=get_settings().openai.key, openai_api_base=openai_api_base)
except AttributeError as e:
if getattr(e, "name"):
raise ValueError(f"OpenAI {e.name} is required") from e
else:
raise e
def chat(self, messages: list, model: str, temperature: float):
if self.azure:
# we must set the deployment_id only here (instead of the __init__ method) to support fallback_deployments
return self._chat.invoke(input = messages, model=model, temperature=temperature, deployment_name=self.deployment_id)
else:
return self._chat.invoke(input = messages, model=model, temperature=temperature)
@property
def deployment_id(self):
"""
Returns the deployment ID for the OpenAI API.
"""
return get_settings().get("OPENAI.DEPLOYMENT_ID", None)
@retry(exceptions=(APIError, Timeout, AttributeError, RateLimitError),
tries=OPENAI_RETRIES, delay=2, backoff=2, jitter=(1, 3))
async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2):
try:
messages = [SystemMessage(content=system), HumanMessage(content=user)]
# get a chat completion from the formatted messages
resp = self.chat(messages, model=model, temperature=temperature)
finish_reason = "completed"
return resp.content, finish_reason
except (Exception) as e:
get_logger().error("Unknown error during OpenAI inference: ", e)
raise e