Files
pr-agent/pr_agent/algo/token_handler.py

146 lines
6.0 KiB
Python

from threading import Lock
from jinja2 import Environment, StrictUndefined
from tiktoken import encoding_for_model, get_encoding
from pr_agent.config_loader import get_settings
from pr_agent.log import get_logger
class TokenEncoder:
_encoder_instance = None
_model = None
_lock = Lock() # Create a lock object
@classmethod
def get_token_encoder(cls):
model = get_settings().config.model
if cls._encoder_instance is None or model != cls._model: # Check without acquiring the lock for performance
with cls._lock: # Lock acquisition to ensure thread safety
if cls._encoder_instance is None or model != cls._model:
cls._model = model
try:
cls._encoder_instance = encoding_for_model(cls._model) if "gpt" in cls._model else get_encoding(
"o200k_base")
except:
cls._encoder_instance = get_encoding("o200k_base")
return cls._encoder_instance
class TokenHandler:
"""
A class for handling tokens in the context of a pull request.
Attributes:
- encoder: An object of the encoding_for_model class from the tiktoken module. Used to encode strings and count the
number of tokens in them.
- limit: The maximum number of tokens allowed for the given model, as defined in the MAX_TOKENS dictionary in the
pr_agent.algo module.
- prompt_tokens: The number of tokens in the system and user strings, as calculated by the _get_system_user_tokens
method.
"""
def __init__(self, pr=None, vars: dict = {}, system="", user=""):
"""
Initializes the TokenHandler object.
Args:
- pr: The pull request object.
- vars: A dictionary of variables.
- system: The system string.
- user: The user string.
"""
self.encoder = TokenEncoder.get_token_encoder()
if pr is not None:
self.prompt_tokens = self._get_system_user_tokens(pr, self.encoder, vars, system, user)
def _get_system_user_tokens(self, pr, encoder, vars: dict, system, user):
"""
Calculates the number of tokens in the system and user strings.
Args:
- pr: The pull request object.
- encoder: An object of the encoding_for_model class from the tiktoken module.
- vars: A dictionary of variables.
- system: The system string.
- user: The user string.
Returns:
The sum of the number of tokens in the system and user strings.
"""
try:
environment = Environment(undefined=StrictUndefined)
system_prompt = environment.from_string(system).render(vars)
user_prompt = environment.from_string(user).render(vars)
system_prompt_tokens = len(encoder.encode(system_prompt))
user_prompt_tokens = len(encoder.encode(user_prompt))
return system_prompt_tokens + user_prompt_tokens
except Exception as e:
get_logger().error(f"Error in _get_system_user_tokens: {e}")
return 0
def calc_claude_tokens(self, patch):
try:
import anthropic
from pr_agent.algo import MAX_TOKENS
client = anthropic.Anthropic(api_key=get_settings(use_context=False).get('anthropic.key'))
MaxTokens = MAX_TOKENS[get_settings().config.model]
# Check if the content size is too large (9MB limit)
if len(patch.encode('utf-8')) > 9_000_000:
get_logger().warning(
"Content too large for Anthropic token counting API, falling back to local tokenizer"
)
return MaxTokens
response = client.messages.count_tokens(
model="claude-3-7-sonnet-20250219",
system="system",
messages=[{
"role": "user",
"content": patch
}],
)
return response.input_tokens
except Exception as e:
get_logger().error( f"Error in Anthropic token counting: {e}")
return MaxTokens
def estimate_token_count_for_non_anth_claude_models(self, model, default_encoder_estimate):
from math import ceil
import re
model_is_from_o_series = re.match(r"^o[1-9](-mini|-preview)?$", model)
if ('gpt' in get_settings().config.model.lower() or model_is_from_o_series) and get_settings(use_context=False).get('openai.key'):
return default_encoder_estimate
#else: Model is not an OpenAI one - therefore, cannot provide an accurate token count and instead, return a higher number as best effort.
elbow_factor = 1 + get_settings().get('config.model_token_count_estimate_factor', 0)
get_logger().warning(f"{model}'s expected token count cannot be accurately estimated. Using {elbow_factor} of encoder output as best effort estimate")
return ceil(elbow_factor * default_encoder_estimate)
def count_tokens(self, patch: str, force_accurate=False) -> int:
"""
Counts the number of tokens in a given patch string.
Args:
- patch: The patch string.
Returns:
The number of tokens in the patch string.
"""
encoder_estimate = len(self.encoder.encode(patch, disallowed_special=()))
#If an estimate is enough (for example, in cases where the maximal allowed tokens is way below the known limits), return it.
if not force_accurate:
return encoder_estimate
#else, force_accurate==True: User requested providing an accurate estimation:
model = get_settings().config.model.lower()
if 'claude' in model and get_settings(use_context=False).get('anthropic.key'):
return self.calc_claude_tokens(patch) # API call to Anthropic for accurate token counting for Claude models
#else: Non Anthropic provided model:
return self.estimate_token_count_for_non_anth_claude_models(model, encoder_estimate)