Files
pr-agent/pr_agent/tools/pr_reviewer.py
2023-11-15 14:12:59 +02:00

406 lines
19 KiB
Python

import copy
import datetime
from collections import OrderedDict
from typing import List, Tuple
import yaml
from jinja2 import Environment, StrictUndefined
from yaml import SafeLoader
from pr_agent.algo.ai_handler import AiHandler
from pr_agent.algo.pr_processing import get_pr_diff, retry_with_fallback_models
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.algo.utils import convert_to_markdown, load_yaml, try_fix_yaml, set_custom_labels, get_user_labels
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import get_git_provider
from pr_agent.git_providers.git_provider import IncrementalPR, get_main_pr_language
from pr_agent.log import get_logger
from pr_agent.servers.help import actions_help_text, bot_help_text
class PRReviewer:
"""
The PRReviewer class is responsible for reviewing a pull request and generating feedback using an AI model.
"""
def __init__(self, pr_url: str, is_answer: bool = False, is_auto: bool = False, args: list = None):
"""
Initialize the PRReviewer object with the necessary attributes and objects to review a pull request.
Args:
pr_url (str): The URL of the pull request to be reviewed.
is_answer (bool, optional): Indicates whether the review is being done in answer mode. Defaults to False.
args (list, optional): List of arguments passed to the PRReviewer class. Defaults to None.
"""
self.parse_args(args) # -i command
self.git_provider = get_git_provider()(pr_url, incremental=self.incremental)
self.main_language = get_main_pr_language(
self.git_provider.get_languages(), self.git_provider.get_files()
)
self.pr_url = pr_url
self.is_answer = is_answer
self.is_auto = is_auto
if self.is_answer and not self.git_provider.is_supported("get_issue_comments"):
raise Exception(f"Answer mode is not supported for {get_settings().config.git_provider} for now")
self.ai_handler = AiHandler()
self.patches_diff = None
self.prediction = None
answer_str, question_str = self._get_user_answers()
self.vars = {
"title": self.git_provider.pr.title,
"branch": self.git_provider.get_pr_branch(),
"description": self.git_provider.get_pr_description(),
"language": self.main_language,
"diff": "", # empty diff for initial calculation
"require_score": get_settings().pr_reviewer.require_score_review,
"require_tests": get_settings().pr_reviewer.require_tests_review,
"require_security": get_settings().pr_reviewer.require_security_review,
"require_focused": get_settings().pr_reviewer.require_focused_review,
"require_estimate_effort_to_review": get_settings().pr_reviewer.require_estimate_effort_to_review,
'num_code_suggestions': get_settings().pr_reviewer.num_code_suggestions,
'question_str': question_str,
'answer_str': answer_str,
"extra_instructions": get_settings().pr_reviewer.extra_instructions,
"commit_messages_str": self.git_provider.get_commit_messages(),
"custom_labels": "",
"enable_custom_labels": get_settings().config.enable_custom_labels,
}
self.token_handler = TokenHandler(
self.git_provider.pr,
self.vars,
get_settings().pr_review_prompt.system,
get_settings().pr_review_prompt.user
)
def parse_args(self, args: List[str]) -> None:
"""
Parse the arguments passed to the PRReviewer class and set the 'incremental' attribute accordingly.
Args:
args: A list of arguments passed to the PRReviewer class.
Returns:
None
"""
is_incremental = False
if args and len(args) >= 1:
arg = args[0]
if arg == "-i":
is_incremental = True
self.incremental = IncrementalPR(is_incremental)
async def run(self) -> None:
"""
Review the pull request and generate feedback.
"""
try:
if self.is_auto and not get_settings().pr_reviewer.automatic_review:
get_logger().info(f'Automatic review is disabled {self.pr_url}')
return None
if self.incremental.is_incremental and not self._can_run_incremental_review():
return None
get_logger().info(f'Reviewing PR: {self.pr_url} ...')
if get_settings().config.publish_output:
self.git_provider.publish_comment("Preparing review...", is_temporary=True)
await retry_with_fallback_models(self._prepare_prediction)
get_logger().info('Preparing PR review...')
pr_comment = self._prepare_pr_review()
if get_settings().config.publish_output:
get_logger().info('Pushing PR review...')
previous_review_comment = self._get_previous_review_comment()
# publish the review
if get_settings().pr_reviewer.persistent_comment and not self.incremental.is_incremental:
self.git_provider.publish_persistent_comment(pr_comment,
initial_header="## PR Analysis",
update_header=True)
else:
self.git_provider.publish_comment(pr_comment)
self.git_provider.remove_initial_comment()
if previous_review_comment:
self._remove_previous_review_comment(previous_review_comment)
if get_settings().pr_reviewer.inline_code_comments:
get_logger().info('Pushing inline code comments...')
self._publish_inline_code_comments()
except Exception as e:
get_logger().error(f"Failed to review PR: {e}")
async def _prepare_prediction(self, model: str) -> None:
"""
Prepare the AI prediction for the pull request review.
Args:
model: A string representing the AI model to be used for the prediction.
Returns:
None
"""
get_logger().info('Getting PR diff...')
self.patches_diff = get_pr_diff(self.git_provider, self.token_handler, model)
get_logger().info('Getting AI prediction...')
self.prediction = await self._get_prediction(model)
async def _get_prediction(self, model: str) -> str:
"""
Generate an AI prediction for the pull request review.
Args:
model: A string representing the AI model to be used for the prediction.
Returns:
A string representing the AI prediction for the pull request review.
"""
variables = copy.deepcopy(self.vars)
variables["diff"] = self.patches_diff # update diff
environment = Environment(undefined=StrictUndefined)
system_prompt = environment.from_string(get_settings().pr_review_prompt.system).render(variables)
user_prompt = environment.from_string(get_settings().pr_review_prompt.user).render(variables)
if get_settings().config.verbosity_level >= 2:
get_logger().info(f"\nSystem prompt:\n{system_prompt}")
get_logger().info(f"\nUser prompt:\n{user_prompt}")
response, finish_reason = await self.ai_handler.chat_completion(
model=model,
temperature=0.2,
system=system_prompt,
user=user_prompt
)
if get_settings().config.verbosity_level >= 2:
get_logger().info(f"\nAI response:\n{response}")
return response
def _prepare_pr_review(self) -> str:
"""
Prepare the PR review by processing the AI prediction and generating a markdown-formatted text that summarizes
the feedback.
"""
data = load_yaml(self.prediction.strip())
# Move 'Security concerns' key to 'PR Analysis' section for better display
pr_feedback = data.get('PR Feedback', {})
security_concerns = pr_feedback.get('Security concerns')
if security_concerns is not None:
del pr_feedback['Security concerns']
if type(security_concerns) == bool and security_concerns == False:
data.setdefault('PR Analysis', {})['Security concerns'] = 'No security concerns found'
else:
data.setdefault('PR Analysis', {})['Security concerns'] = security_concerns
#
if 'Code feedback' in pr_feedback:
code_feedback = pr_feedback['Code feedback']
# Filter out code suggestions that can be submitted as inline comments
if get_settings().pr_reviewer.inline_code_comments:
del pr_feedback['Code feedback']
else:
for suggestion in code_feedback:
if ('relevant file' in suggestion) and (not suggestion['relevant file'].startswith('``')):
suggestion['relevant file'] = f"``{suggestion['relevant file']}``"
if 'relevant line' not in suggestion:
suggestion['relevant line'] = ''
relevant_line_str = suggestion['relevant line'].split('\n')[0]
# removing '+'
suggestion['relevant line'] = relevant_line_str.lstrip('+').strip()
# try to add line numbers link to code suggestions
if hasattr(self.git_provider, 'generate_link_to_relevant_line_number'):
link = self.git_provider.generate_link_to_relevant_line_number(suggestion)
if link:
suggestion['relevant line'] = f"[{suggestion['relevant line']}]({link})"
else:
pass
# Add incremental review section
if self.incremental.is_incremental:
last_commit_url = f"{self.git_provider.get_pr_url()}/commits/" \
f"{self.git_provider.incremental.first_new_commit_sha}"
last_commit_msg = self.incremental.commits_range[0].commit.message if self.incremental.commits_range else ""
incremental_review_markdown_text = f"Starting from commit {last_commit_url}"
if last_commit_msg:
replacement = last_commit_msg.splitlines(keepends=False)[0].replace('_', r'\_')
incremental_review_markdown_text += f" \n_({replacement})_"
data = OrderedDict(data)
data.update({'Incremental PR Review': {
"⏮️ Review for commits since previous PR-Agent review": incremental_review_markdown_text}})
data.move_to_end('Incremental PR Review', last=False)
markdown_text = convert_to_markdown(data, self.git_provider.is_supported("gfm_markdown"))
user = self.git_provider.get_user_id()
# Add help text if not in CLI mode
if not get_settings().get("CONFIG.CLI_MODE", False):
markdown_text += "\n### How to use\n"
bot_user = "[bot]" if get_settings().github_app.override_deployment_type else get_settings().github_app.bot_user
if user and bot_user not in user:
markdown_text += bot_help_text(user)
else:
markdown_text += actions_help_text
# Add custom labels from the review prediction (effort, security)
self.set_review_labels(data)
# Log markdown response if verbosity level is high
if get_settings().config.verbosity_level >= 2:
get_logger().info(f"Markdown response:\n{markdown_text}")
if markdown_text == None or len(markdown_text) == 0:
markdown_text = ""
return markdown_text
def _publish_inline_code_comments(self) -> None:
"""
Publishes inline comments on a pull request with code suggestions generated by the AI model.
"""
if get_settings().pr_reviewer.num_code_suggestions == 0:
return
review_text = self.prediction.strip()
review_text = review_text.removeprefix('```yaml').rstrip('`')
try:
data = yaml.load(review_text, Loader=SafeLoader)
except Exception as e:
get_logger().error(f"Failed to parse AI prediction: {e}")
data = try_fix_yaml(review_text)
comments: List[str] = []
for suggestion in data.get('PR Feedback', {}).get('Code feedback', []):
relevant_file = suggestion.get('relevant file', '').strip()
relevant_line_in_file = suggestion.get('relevant line', '').strip()
content = suggestion.get('suggestion', '')
if not relevant_file or not relevant_line_in_file or not content:
get_logger().info("Skipping inline comment with missing file/line/content")
continue
if self.git_provider.is_supported("create_inline_comment"):
comment = self.git_provider.create_inline_comment(content, relevant_file, relevant_line_in_file)
if comment:
comments.append(comment)
else:
self.git_provider.publish_inline_comment(content, relevant_file, relevant_line_in_file)
if comments:
self.git_provider.publish_inline_comments(comments)
def _get_user_answers(self) -> Tuple[str, str]:
"""
Retrieves the question and answer strings from the discussion messages related to a pull request.
Returns:
A tuple containing the question and answer strings.
"""
question_str = ""
answer_str = ""
if self.is_answer:
discussion_messages = self.git_provider.get_issue_comments()
for message in discussion_messages.reversed:
if "Questions to better understand the PR:" in message.body:
question_str = message.body
elif '/answer' in message.body:
answer_str = message.body
if answer_str and question_str:
break
return question_str, answer_str
def _get_previous_review_comment(self):
"""
Get the previous review comment if it exists.
"""
try:
if get_settings().pr_reviewer.remove_previous_review_comment and hasattr(self.git_provider, "get_previous_review"):
return self.git_provider.get_previous_review(
full=not self.incremental.is_incremental,
incremental=self.incremental.is_incremental,
)
except Exception as e:
get_logger().exception(f"Failed to get previous review comment, error: {e}")
def _remove_previous_review_comment(self, comment):
"""
Remove the previous review comment if it exists.
"""
try:
if get_settings().pr_reviewer.remove_previous_review_comment and comment:
self.git_provider.remove_comment(comment)
except Exception as e:
get_logger().exception(f"Failed to remove previous review comment, error: {e}")
def _can_run_incremental_review(self) -> bool:
"""Checks if we can run incremental review according the various configurations and previous review"""
# checking if running is auto mode but there are no new commits
if self.is_auto and not self.incremental.first_new_commit_sha:
get_logger().info(f"Incremental review is enabled for {self.pr_url} but there are no new commits")
return False
# checking if there are enough commits to start the review
num_new_commits = len(self.incremental.commits_range)
num_commits_threshold = get_settings().pr_reviewer.minimal_commits_for_incremental_review
not_enough_commits = num_new_commits < num_commits_threshold
# checking if the commits are not too recent to start the review
recent_commits_threshold = datetime.datetime.now() - datetime.timedelta(
minutes=get_settings().pr_reviewer.minimal_minutes_for_incremental_review
)
last_seen_commit_date = (
self.incremental.last_seen_commit.commit.author.date if self.incremental.last_seen_commit else None
)
all_commits_too_recent = (
last_seen_commit_date > recent_commits_threshold if self.incremental.last_seen_commit else False
)
# check all the thresholds or just one to start the review
condition = any if get_settings().pr_reviewer.require_all_thresholds_for_incremental_review else all
if condition((not_enough_commits, all_commits_too_recent)):
get_logger().info(
f"Incremental review is enabled for {self.pr_url} but didn't pass the threshold check to run:"
f"\n* Number of new commits = {num_new_commits} (threshold is {num_commits_threshold})"
f"\n* Last seen commit date = {last_seen_commit_date} (threshold is {recent_commits_threshold})"
)
return False
return True
def set_review_labels(self, data):
if (get_settings().pr_reviewer.enable_review_labels_security or
get_settings().pr_reviewer.enable_review_labels_effort):
try:
review_labels = []
if get_settings().pr_reviewer.enable_review_labels_effort:
estimated_effort = data['PR Analysis']['Estimated effort to review [1-5]']
estimated_effort_number = int(estimated_effort.split(',')[0])
if 1 <= estimated_effort_number <= 5: # 1, because ...
review_labels.append(f'Review effort [1-5]: {estimated_effort_number}')
if get_settings().pr_reviewer.enable_review_labels_security:
security_concerns = data['PR Analysis']['Security concerns'] # yes, because ...
security_concerns_bool = 'yes' in security_concerns.lower() or 'true' in security_concerns.lower()
if security_concerns_bool:
review_labels.append('Possible security concern')
if review_labels:
current_labels = self.git_provider.get_labels()
current_labels_filtered = [label for label in current_labels if
not label.lower().startswith('review effort [1-5]:') and not label.lower().startswith(
'possible security concern')]
self.git_provider.publish_labels(review_labels + current_labels_filtered)
except Exception as e:
get_logger().error(f"Failed to set review labels, error: {e}")