Files
pr-agent/pr_agent/tools/pr_description.py
2023-08-20 18:59:40 +03:00

194 lines
7.7 KiB
Python

import copy
import json
import logging
from typing import List, Tuple
from jinja2 import Environment, StrictUndefined
from pr_agent.algo.ai_handler import AiHandler
from pr_agent.algo.pr_processing import get_pr_diff, retry_with_fallback_models
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.algo.utils import load_yaml
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import get_git_provider
from pr_agent.git_providers.git_provider import get_main_pr_language
class PRDescription:
def __init__(self, pr_url: str, args: list = None):
"""
Initialize the PRDescription object with the necessary attributes and objects for generating a PR description
using an AI model.
Args:
pr_url (str): The URL of the pull request.
args (list, optional): List of arguments passed to the PRDescription class. Defaults to None.
"""
# Initialize the git provider and main PR language
self.git_provider = get_git_provider()(pr_url)
self.main_pr_language = get_main_pr_language(
self.git_provider.get_languages(), self.git_provider.get_files()
)
# Initialize the AI handler
self.ai_handler = AiHandler()
# Initialize the variables dictionary
self.vars = {
"title": self.git_provider.pr.title,
"branch": self.git_provider.get_pr_branch(),
"description": self.git_provider.get_pr_description(),
"language": self.main_pr_language,
"diff": "", # empty diff for initial calculation
"extra_instructions": get_settings().pr_description.extra_instructions,
"commit_messages_str": self.git_provider.get_commit_messages()
}
self.user_description = self.git_provider.get_user_description()
# Initialize the token handler
self.token_handler = TokenHandler(
self.git_provider.pr,
self.vars,
get_settings().pr_description_prompt.system,
get_settings().pr_description_prompt.user,
)
# Initialize patches_diff and prediction attributes
self.patches_diff = None
self.prediction = None
async def run(self):
"""
Generates a PR description using an AI model and publishes it to the PR.
"""
logging.info('Generating a PR description...')
if get_settings().config.publish_output:
self.git_provider.publish_comment("Preparing pr description...", is_temporary=True)
await retry_with_fallback_models(self._prepare_prediction)
logging.info('Preparing answer...')
pr_title, pr_body, pr_types, markdown_text = self._prepare_pr_answer()
if get_settings().config.publish_output:
logging.info('Pushing answer...')
if get_settings().pr_description.publish_description_as_comment:
self.git_provider.publish_comment(markdown_text)
else:
self.git_provider.publish_description(pr_title, pr_body)
if self.git_provider.is_supported("get_labels"):
current_labels = self.git_provider.get_labels()
if current_labels is None:
current_labels = []
self.git_provider.publish_labels(pr_types + current_labels)
self.git_provider.remove_initial_comment()
return ""
async def _prepare_prediction(self, model: str) -> None:
"""
Prepare the AI prediction for the PR description based on the provided model.
Args:
model (str): The name of the model to be used for generating the prediction.
Returns:
None
Raises:
Any exceptions raised by the 'get_pr_diff' and '_get_prediction' functions.
"""
logging.info('Getting PR diff...')
self.patches_diff = get_pr_diff(self.git_provider, self.token_handler, model)
logging.info('Getting AI prediction...')
self.prediction = await self._get_prediction(model)
async def _get_prediction(self, model: str) -> str:
"""
Generate an AI prediction for the PR description based on the provided model.
Args:
model (str): The name of the model to be used for generating the prediction.
Returns:
str: The generated AI prediction.
"""
variables = copy.deepcopy(self.vars)
variables["diff"] = self.patches_diff # update diff
environment = Environment(undefined=StrictUndefined)
system_prompt = environment.from_string(get_settings().pr_description_prompt.system).render(variables)
user_prompt = environment.from_string(get_settings().pr_description_prompt.user).render(variables)
if get_settings().config.verbosity_level >= 2:
logging.info(f"\nSystem prompt:\n{system_prompt}")
logging.info(f"\nUser prompt:\n{user_prompt}")
response, finish_reason = await self.ai_handler.chat_completion(
model=model,
temperature=0.2,
system=system_prompt,
user=user_prompt
)
return response
def _prepare_pr_answer(self) -> Tuple[str, str, List[str], str]:
"""
Prepare the PR description based on the AI prediction data.
Returns:
- title: a string containing the PR title.
- pr_body: a string containing the PR body in a markdown format.
- pr_types: a list of strings containing the PR types.
- markdown_text: a string containing the AI prediction data in a markdown format. used for publishing a comment
"""
# Load the AI prediction data into a dictionary
data = load_yaml(self.prediction.strip())
if get_settings().pr_description.keep_user_description and self.user_description:
data["User Description"] = self.user_description
# Initialization
pr_types = []
# Iterate over the dictionary items and append the key and value to 'markdown_text' in a markdown format
markdown_text = ""
for key, value in data.items():
markdown_text += f"## {key}\n\n"
markdown_text += f"{value}\n\n"
# If the 'PR Type' key is present in the dictionary, split its value by comma and assign it to 'pr_types'
if 'PR Type' in data:
if type(data['PR Type']) == list:
pr_types = data['PR Type']
elif type(data['PR Type']) == str:
pr_types = data['PR Type'].split(',')
# Assign the value of the 'PR Title' key to 'title' variable and remove it from the dictionary
title = data.pop('PR Title')
# Iterate over the remaining dictionary items and append the key and value to 'pr_body' in a markdown format,
# except for the items containing the word 'walkthrough'
pr_body = ""
for idx, (key, value) in enumerate(data.items()):
pr_body += f"## {key}:\n"
if 'walkthrough' in key.lower():
# for filename, description in value.items():
for file in value:
filename = file['filename'].replace("'", "`")
description = file['changes in file']
pr_body += f'`{filename}`: {description}\n'
else:
# if the value is a list, join its items by comma
if type(value) == list:
value = ', '.join(v for v in value)
pr_body += f"{value}\n"
if idx < len(data) - 1:
pr_body += "\n___\n"
if get_settings().config.verbosity_level >= 2:
logging.info(f"title:\n{title}\n{pr_body}")
return title, pr_body, pr_types, markdown_text