Files
pr-agent/pr_agent/tools/pr_reviewer.py
Marshall Yount ef71a7049e fix TypeError when iterating discussion_messages
When `pr-agent` is reviewing a long list of messages, a TypeError is thrown on the line

```python
for message in reversed(discussion_messages):
```

When reviewing the PyGithub library, the recommend an alternate syntax for iterating a paginated list in reverse.

https://github.com/PyGithub/PyGithub/blob/v1.59.0/github/PaginatedList.py#L122-L125

```
    If you want to iterate in reversed order, just do::

        for repo in user.get_repos().reversed:
            print(repo.name)
```

And here's a copy of the actual traceback

```
Traceback (most recent call last):
  File "/app/pr_agent/servers/github_action_runner.py", line 68, in <module>
    asyncio.run(run_action())
  File "/usr/local/lib/python3.10/asyncio/runners.py", line 44, in run
    return loop.run_until_complete(main)
  File "/usr/local/lib/python3.10/asyncio/base_events.py", line 649, in run_until_complete
    return future.result()
  File "/app/pr_agent/servers/github_action_runner.py", line 64, in run_action
    await PRAgent().handle_request(pr_url, body)
  File "/app/pr_agent/agent/pr_agent.py", line 19, in handle_request
    await PRReviewer(pr_url, is_answer=True).review()
  File "/app/pr_agent/tools/pr_reviewer.py", line 49, in __init__
    answer_str, question_str = self._get_user_answers()
  File "/app/pr_agent/tools/pr_reviewer.py", line 253, in _get_user_answers
    for message in reversed(discussion_messages):
TypeError: object of type 'PaginatedList' has no len()
```
2023-07-28 11:04:46 +02:00

263 lines
10 KiB
Python

import copy
import json
import logging
from collections import OrderedDict
from typing import Tuple, List
from jinja2 import Environment, StrictUndefined
from pr_agent.algo.ai_handler import AiHandler
from pr_agent.algo.pr_processing import get_pr_diff, retry_with_fallback_models
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.algo.utils import convert_to_markdown, try_fix_json
from pr_agent.config_loader import settings
from pr_agent.git_providers import get_git_provider
from pr_agent.git_providers.git_provider import get_main_pr_language, IncrementalPR
from pr_agent.servers.help import actions_help_text, bot_help_text
class PRReviewer:
"""
The PRReviewer class is responsible for reviewing a pull request and generating feedback using an AI model.
"""
def __init__(self, pr_url: str, cli_mode: bool = False, is_answer: bool = False, args: list = None):
"""
Initialize the PRReviewer object with the necessary attributes and objects to review a pull request.
Args:
pr_url (str): The URL of the pull request to be reviewed.
cli_mode (bool, optional): Indicates whether the review is being done in command-line interface mode. Defaults to False.
is_answer (bool, optional): Indicates whether the review is being done in answer mode. Defaults to False.
args (list, optional): List of arguments passed to the PRReviewer class. Defaults to None.
"""
self.parse_args(args)
self.git_provider = get_git_provider()(pr_url, incremental=self.incremental)
self.main_language = get_main_pr_language(
self.git_provider.get_languages(), self.git_provider.get_files()
)
self.pr_url = pr_url
self.is_answer = is_answer
if self.is_answer and not self.git_provider.is_supported("get_issue_comments"):
raise Exception(f"Answer mode is not supported for {settings.config.git_provider} for now")
self.ai_handler = AiHandler()
self.patches_diff = None
self.prediction = None
self.cli_mode = cli_mode
answer_str, question_str = self._get_user_answers()
self.vars = {
"title": self.git_provider.pr.title,
"branch": self.git_provider.get_pr_branch(),
"description": self.git_provider.get_pr_description(),
"language": self.main_language,
"diff": "", # empty diff for initial calculation
"require_score": settings.pr_reviewer.require_score_review,
"require_tests": settings.pr_reviewer.require_tests_review,
"require_security": settings.pr_reviewer.require_security_review,
"require_focused": settings.pr_reviewer.require_focused_review,
'num_code_suggestions': settings.pr_reviewer.num_code_suggestions,
'question_str': question_str,
'answer_str': answer_str,
}
self.token_handler = TokenHandler(
self.git_provider.pr,
self.vars,
settings.pr_review_prompt.system,
settings.pr_review_prompt.user
)
def parse_args(self, args: List[str]) -> None:
"""
Parse the arguments passed to the PRReviewer class and set the 'incremental' attribute accordingly.
Args:
args: A list of arguments passed to the PRReviewer class.
Returns:
None
"""
is_incremental = False
if args and len(args) >= 1:
arg = args[0]
if arg == "-i":
is_incremental = True
self.incremental = IncrementalPR(is_incremental)
async def review(self) -> None:
"""
Review the pull request and generate feedback.
"""
logging.info('Reviewing PR...')
if settings.config.publish_output:
self.git_provider.publish_comment("Preparing review...", is_temporary=True)
await retry_with_fallback_models(self._prepare_prediction)
logging.info('Preparing PR review...')
pr_comment = self._prepare_pr_review()
if settings.config.publish_output:
logging.info('Pushing PR review...')
self.git_provider.publish_comment(pr_comment)
self.git_provider.remove_initial_comment()
if settings.pr_reviewer.inline_code_comments:
logging.info('Pushing inline code comments...')
self._publish_inline_code_comments()
async def _prepare_prediction(self, model: str) -> None:
"""
Prepare the AI prediction for the pull request review.
Args:
model: A string representing the AI model to be used for the prediction.
Returns:
None
"""
logging.info('Getting PR diff...')
self.patches_diff = get_pr_diff(self.git_provider, self.token_handler, model)
logging.info('Getting AI prediction...')
self.prediction = await self._get_prediction(model)
async def _get_prediction(self, model: str) -> str:
"""
Generate an AI prediction for the pull request review.
Args:
model: A string representing the AI model to be used for the prediction.
Returns:
A string representing the AI prediction for the pull request review.
"""
variables = copy.deepcopy(self.vars)
variables["diff"] = self.patches_diff # update diff
environment = Environment(undefined=StrictUndefined)
system_prompt = environment.from_string(settings.pr_review_prompt.system).render(variables)
user_prompt = environment.from_string(settings.pr_review_prompt.user).render(variables)
if settings.config.verbosity_level >= 2:
logging.info(f"\nSystem prompt:\n{system_prompt}")
logging.info(f"\nUser prompt:\n{user_prompt}")
response, finish_reason = await self.ai_handler.chat_completion(
model=model,
temperature=0.2,
system=system_prompt,
user=user_prompt
)
return response
def _prepare_pr_review(self) -> str:
"""
Prepare the PR review by processing the AI prediction and generating a markdown-formatted text that summarizes the feedback.
"""
review = self.prediction.strip()
try:
data = json.loads(review)
except json.decoder.JSONDecodeError:
data = try_fix_json(review)
# Move 'Security concerns' key to 'PR Analysis' section for better display
if 'PR Feedback' in data and 'Security concerns' in data['PR Feedback']:
val = data['PR Feedback']['Security concerns']
del data['PR Feedback']['Security concerns']
data['PR Analysis']['Security concerns'] = val
# Filter out code suggestions that can be submitted as inline comments
if settings.config.git_provider != 'bitbucket' and settings.pr_reviewer.inline_code_comments and 'Code suggestions' in data['PR Feedback']:
data['PR Feedback']['Code suggestions'] = [
d for d in data['PR Feedback']['Code suggestions']
if any(key not in d for key in ('relevant file', 'relevant line in file', 'suggestion content'))
]
if not data['PR Feedback']['Code suggestions']:
del data['PR Feedback']['Code suggestions']
# Add incremental review section
if self.incremental.is_incremental:
last_commit_url = f"{self.git_provider.get_pr_url()}/commits/{self.git_provider.incremental.first_new_commit_sha}"
data = OrderedDict(data)
data.update({'Incremental PR Review': {
"⏮️ Review for commits since previous PR-Agent review": f"Starting from commit {last_commit_url}"}})
data.move_to_end('Incremental PR Review', last=False)
markdown_text = convert_to_markdown(data)
user = self.git_provider.get_user_id()
# Add help text if not in CLI mode
if not self.cli_mode:
markdown_text += "\n### How to use\n"
if user and '[bot]' not in user:
markdown_text += bot_help_text(user)
else:
markdown_text += actions_help_text
# Log markdown response if verbosity level is high
if settings.config.verbosity_level >= 2:
logging.info(f"Markdown response:\n{markdown_text}")
return markdown_text
def _publish_inline_code_comments(self) -> None:
"""
Publishes inline comments on a pull request with code suggestions generated by the AI model.
"""
if settings.pr_reviewer.num_code_suggestions == 0:
return
review = self.prediction.strip()
try:
data = json.loads(review)
except json.decoder.JSONDecodeError:
data = try_fix_json(review)
comments: List[str] = []
for suggestion in data.get('PR Feedback', {}).get('Code suggestions', []):
relevant_file = suggestion.get('relevant file', '').strip()
relevant_line_in_file = suggestion.get('relevant line in file', '').strip()
content = suggestion.get('suggestion content', '')
if not relevant_file or not relevant_line_in_file or not content:
logging.info("Skipping inline comment with missing file/line/content")
continue
if self.git_provider.is_supported("create_inline_comment"):
comment = self.git_provider.create_inline_comment(content, relevant_file, relevant_line_in_file)
if comment:
comments.append(comment)
else:
self.git_provider.publish_inline_comment(content, relevant_file, relevant_line_in_file)
if comments:
self.git_provider.publish_inline_comments(comments)
def _get_user_answers(self) -> Tuple[str, str]:
"""
Retrieves the question and answer strings from the discussion messages related to a pull request.
Returns:
A tuple containing the question and answer strings.
"""
question_str = ""
answer_str = ""
if self.is_answer:
discussion_messages = self.git_provider.get_issue_comments()
for message in discussion_messages.reversed:
if "Questions to better understand the PR:" in message.body:
question_str = message.body
elif '/answer' in message.body:
answer_str = message.body
if answer_str and question_str:
break
return question_str, answer_str