Files
pr-agent/pr_agent/tools/pr_reviewer.py

294 lines
12 KiB
Python

import copy
import json
import logging
from collections import OrderedDict
from typing import List, Tuple
import yaml
from jinja2 import Environment, StrictUndefined
from yaml import SafeLoader
from pr_agent.algo.ai_handler import AiHandler
from pr_agent.algo.pr_processing import get_pr_diff, retry_with_fallback_models, \
find_line_number_of_relevant_line_in_file, clip_tokens
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.algo.utils import convert_to_markdown, try_fix_json, try_fix_yaml, load_yaml
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import get_git_provider
from pr_agent.git_providers.git_provider import IncrementalPR, get_main_pr_language
from pr_agent.servers.help import actions_help_text, bot_help_text
class PRReviewer:
"""
The PRReviewer class is responsible for reviewing a pull request and generating feedback using an AI model.
"""
def __init__(self, pr_url: str, is_answer: bool = False, is_auto: bool = False, args: list = None):
"""
Initialize the PRReviewer object with the necessary attributes and objects to review a pull request.
Args:
pr_url (str): The URL of the pull request to be reviewed.
is_answer (bool, optional): Indicates whether the review is being done in answer mode. Defaults to False.
args (list, optional): List of arguments passed to the PRReviewer class. Defaults to None.
"""
self.parse_args(args) # -i command
self.git_provider = get_git_provider()(pr_url, incremental=self.incremental)
self.main_language = get_main_pr_language(
self.git_provider.get_languages(), self.git_provider.get_files()
)
self.pr_url = pr_url
self.is_answer = is_answer
self.is_auto = is_auto
if self.is_answer and not self.git_provider.is_supported("get_issue_comments"):
raise Exception(f"Answer mode is not supported for {get_settings().config.git_provider} for now")
self.ai_handler = AiHandler()
self.patches_diff = None
self.prediction = None
answer_str, question_str = self._get_user_answers()
self.vars = {
"title": self.git_provider.pr.title,
"branch": self.git_provider.get_pr_branch(),
"description": self.git_provider.get_pr_description(),
"language": self.main_language,
"diff": "", # empty diff for initial calculation
"require_score": get_settings().pr_reviewer.require_score_review,
"require_tests": get_settings().pr_reviewer.require_tests_review,
"require_security": get_settings().pr_reviewer.require_security_review,
"require_focused": get_settings().pr_reviewer.require_focused_review,
'num_code_suggestions': get_settings().pr_reviewer.num_code_suggestions,
'question_str': question_str,
'answer_str': answer_str,
"extra_instructions": get_settings().pr_reviewer.extra_instructions,
"commit_messages_str": self.git_provider.get_commit_messages(),
}
self.token_handler = TokenHandler(
self.git_provider.pr,
self.vars,
get_settings().pr_review_prompt.system,
get_settings().pr_review_prompt.user
)
def parse_args(self, args: List[str]) -> None:
"""
Parse the arguments passed to the PRReviewer class and set the 'incremental' attribute accordingly.
Args:
args: A list of arguments passed to the PRReviewer class.
Returns:
None
"""
is_incremental = False
if args and len(args) >= 1:
arg = args[0]
if arg == "-i":
is_incremental = True
self.incremental = IncrementalPR(is_incremental)
async def run(self) -> None:
"""
Review the pull request and generate feedback.
"""
if self.is_auto and not get_settings().pr_reviewer.automatic_review:
logging.info(f'Automatic review is disabled {self.pr_url}')
return None
logging.info(f'Reviewing PR: {self.pr_url} ...')
if get_settings().config.publish_output:
self.git_provider.publish_comment("Preparing review...", is_temporary=True)
await retry_with_fallback_models(self._prepare_prediction)
logging.info('Preparing PR review...')
pr_comment = self._prepare_pr_review()
if get_settings().config.publish_output:
logging.info('Pushing PR review...')
self.git_provider.publish_comment(pr_comment)
self.git_provider.remove_initial_comment()
if get_settings().pr_reviewer.inline_code_comments:
logging.info('Pushing inline code comments...')
self._publish_inline_code_comments()
async def _prepare_prediction(self, model: str) -> None:
"""
Prepare the AI prediction for the pull request review.
Args:
model: A string representing the AI model to be used for the prediction.
Returns:
None
"""
logging.info('Getting PR diff...')
self.patches_diff = get_pr_diff(self.git_provider, self.token_handler, model)
logging.info('Getting AI prediction...')
self.prediction = await self._get_prediction(model)
async def _get_prediction(self, model: str) -> str:
"""
Generate an AI prediction for the pull request review.
Args:
model: A string representing the AI model to be used for the prediction.
Returns:
A string representing the AI prediction for the pull request review.
"""
variables = copy.deepcopy(self.vars)
variables["diff"] = self.patches_diff # update diff
environment = Environment(undefined=StrictUndefined)
system_prompt = environment.from_string(get_settings().pr_review_prompt.system).render(variables)
user_prompt = environment.from_string(get_settings().pr_review_prompt.user).render(variables)
if get_settings().config.verbosity_level >= 2:
logging.info(f"\nSystem prompt:\n{system_prompt}")
logging.info(f"\nUser prompt:\n{user_prompt}")
response, finish_reason = await self.ai_handler.chat_completion(
model=model,
temperature=0.2,
system=system_prompt,
user=user_prompt
)
return response
def _prepare_pr_review(self) -> str:
"""
Prepare the PR review by processing the AI prediction and generating a markdown-formatted text that summarizes
the feedback.
"""
data = load_yaml(self.prediction.strip())
# Move 'Security concerns' key to 'PR Analysis' section for better display
pr_feedback = data.get('PR Feedback', {})
security_concerns = pr_feedback.get('Security concerns')
if security_concerns is not None:
del pr_feedback['Security concerns']
if type(security_concerns) == bool and security_concerns == False:
data.setdefault('PR Analysis', {})['Security concerns'] = 'No security concerns found'
else:
data.setdefault('PR Analysis', {})['Security concerns'] = security_concerns
#
if 'Code feedback' in pr_feedback:
code_feedback = pr_feedback['Code feedback']
# Filter out code suggestions that can be submitted as inline comments
if get_settings().pr_reviewer.inline_code_comments:
del pr_feedback['Code feedback']
else:
for suggestion in code_feedback:
if ('relevant file' in suggestion) and (not suggestion['relevant file'].startswith('``')):
suggestion['relevant file'] = f"``{suggestion['relevant file']}``"
if 'relevant line' not in suggestion:
suggestion['relevant line'] = ''
relevant_line_str = suggestion['relevant line'].split('\n')[0]
# removing '+'
suggestion['relevant line'] = relevant_line_str.lstrip('+').strip()
# try to add line numbers link to code suggestions
if hasattr(self.git_provider, 'generate_link_to_relevant_line_number'):
link = self.git_provider.generate_link_to_relevant_line_number(suggestion)
if link:
suggestion['relevant line'] = f"[{suggestion['relevant line']}]({link})"
# Add incremental review section
if self.incremental.is_incremental:
last_commit_url = f"{self.git_provider.get_pr_url()}/commits/" \
f"{self.git_provider.incremental.first_new_commit_sha}"
data = OrderedDict(data)
data.update({'Incremental PR Review': {
"⏮️ Review for commits since previous PR-Agent review": f"Starting from commit {last_commit_url}"}})
data.move_to_end('Incremental PR Review', last=False)
markdown_text = convert_to_markdown(data, self.git_provider.is_supported("gfm_markdown"))
user = self.git_provider.get_user_id()
# Add help text if not in CLI mode
if not get_settings().get("CONFIG.CLI_MODE", False):
markdown_text += "\n### How to use\n"
if user and '[bot]' not in user:
markdown_text += bot_help_text(user)
else:
markdown_text += actions_help_text
# Log markdown response if verbosity level is high
if get_settings().config.verbosity_level >= 2:
logging.info(f"Markdown response:\n{markdown_text}")
if markdown_text == None or len(markdown_text) == 0:
markdown_text = ""
return markdown_text
def _publish_inline_code_comments(self) -> None:
"""
Publishes inline comments on a pull request with code suggestions generated by the AI model.
"""
if get_settings().pr_reviewer.num_code_suggestions == 0:
return
review_text = self.prediction.strip()
review_text = review_text.removeprefix('```yaml').rstrip('`')
try:
data = yaml.load(review_text, Loader=SafeLoader)
except Exception as e:
logging.error(f"Failed to parse AI prediction: {e}")
data = try_fix_yaml(review_text)
comments: List[str] = []
for suggestion in data.get('PR Feedback', {}).get('Code feedback', []):
relevant_file = suggestion.get('relevant file', '').strip()
relevant_line_in_file = suggestion.get('relevant line', '').strip()
content = suggestion.get('suggestion', '')
if not relevant_file or not relevant_line_in_file or not content:
logging.info("Skipping inline comment with missing file/line/content")
continue
if self.git_provider.is_supported("create_inline_comment"):
comment = self.git_provider.create_inline_comment(content, relevant_file, relevant_line_in_file)
if comment:
comments.append(comment)
else:
self.git_provider.publish_inline_comment(content, relevant_file, relevant_line_in_file)
if comments:
self.git_provider.publish_inline_comments(comments)
def _get_user_answers(self) -> Tuple[str, str]:
"""
Retrieves the question and answer strings from the discussion messages related to a pull request.
Returns:
A tuple containing the question and answer strings.
"""
question_str = ""
answer_str = ""
if self.is_answer:
discussion_messages = self.git_provider.get_issue_comments()
for message in discussion_messages.reversed:
if "Questions to better understand the PR:" in message.body:
question_str = message.body
elif '/answer' in message.body:
answer_str = message.body
if answer_str and question_str:
break
return question_str, answer_str