Files
pr-agent/pr_agent/tools/pr_generate_labels.py
2024-10-30 10:00:36 +09:00

181 lines
7.0 KiB
Python

import copy
import re
from functools import partial
from typing import List, Tuple
from jinja2 import Environment, StrictUndefined
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
from pr_agent.algo.ai_handlers.litellm_ai_handler import LiteLLMAIHandler
from pr_agent.algo.pr_processing import get_pr_diff, retry_with_fallback_models
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.algo.utils import get_user_labels, load_yaml, set_custom_labels
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import get_git_provider
from pr_agent.git_providers.git_provider import get_main_pr_language
from pr_agent.log import get_logger
class PRGenerateLabels:
def __init__(self, pr_url: str, args: list = None,
ai_handler: partial[BaseAiHandler,] = LiteLLMAIHandler):
"""
Initialize the PRGenerateLabels object with the necessary attributes and objects for generating labels
corresponding to the PR using an AI model.
Args:
pr_url (str): The URL of the pull request.
args (list, optional): List of arguments passed to the PRGenerateLabels class. Defaults to None.
"""
# Initialize the git provider and main PR language
self.git_provider = get_git_provider()(pr_url)
self.main_pr_language = get_main_pr_language(
self.git_provider.get_languages(), self.git_provider.get_files()
)
self.pr_id = self.git_provider.get_pr_id()
# Initialize the AI handler
self.ai_handler = ai_handler()
self.ai_handler.main_pr_language = self.main_pr_language
# Initialize the variables dictionary
self.vars = {
"title": self.git_provider.pr.title,
"branch": self.git_provider.get_pr_branch(),
"description": self.git_provider.get_pr_description(full=False),
"language": self.main_pr_language,
"diff": "", # empty diff for initial calculation
"extra_instructions": get_settings().pr_description.extra_instructions,
"commit_messages_str": self.git_provider.get_commit_messages(),
"enable_custom_labels": get_settings().config.enable_custom_labels,
"custom_labels_class": "", # will be filled if necessary in 'set_custom_labels' function
}
# Initialize the token handler
self.token_handler = TokenHandler(
self.git_provider.pr,
self.vars,
get_settings().pr_custom_labels_prompt.system,
get_settings().pr_custom_labels_prompt.user,
)
# Initialize patches_diff and prediction attributes
self.patches_diff = None
self.prediction = None
async def run(self):
"""
Generates a PR labels using an AI model and publishes it to the PR.
"""
try:
get_logger().info(f"Generating a PR labels {self.pr_id}")
if get_settings().config.publish_output:
self.git_provider.publish_comment("Preparing PR labels...", is_temporary=True)
await retry_with_fallback_models(self._prepare_prediction)
get_logger().info(f"Preparing answer {self.pr_id}")
if self.prediction:
self._prepare_data()
else:
return None
pr_labels = self._prepare_labels()
if get_settings().config.publish_output:
get_logger().info(f"Pushing labels {self.pr_id}")
current_labels = self.git_provider.get_pr_labels()
user_labels = get_user_labels(current_labels)
pr_labels = pr_labels + user_labels
if self.git_provider.is_supported("get_labels"):
self.git_provider.publish_labels(pr_labels)
elif pr_labels:
value = ', '.join(v for v in pr_labels)
pr_labels_text = f"## PR Labels:\n{value}\n"
self.git_provider.publish_comment(pr_labels_text, is_temporary=False)
self.git_provider.remove_initial_comment()
except Exception as e:
get_logger().error(f"Error generating PR labels {self.pr_id}: {e}")
return ""
async def _prepare_prediction(self, model: str) -> None:
"""
Prepare the AI prediction for the PR labels based on the provided model.
Args:
model (str): The name of the model to be used for generating the prediction.
Returns:
None
Raises:
Any exceptions raised by the 'get_pr_diff' and '_get_prediction' functions.
"""
get_logger().info(f"Getting PR diff {self.pr_id}")
self.patches_diff = get_pr_diff(self.git_provider, self.token_handler, model)
get_logger().info(f"Getting AI prediction {self.pr_id}")
self.prediction = await self._get_prediction(model)
async def _get_prediction(self, model: str) -> str:
"""
Generate an AI prediction for the PR labels based on the provided model.
Args:
model (str): The name of the model to be used for generating the prediction.
Returns:
str: The generated AI prediction.
"""
variables = copy.deepcopy(self.vars)
variables["diff"] = self.patches_diff # update diff
environment = Environment(undefined=StrictUndefined)
set_custom_labels(variables, self.git_provider)
self.variables = variables
system_prompt = environment.from_string(get_settings().pr_custom_labels_prompt.system).render(self.variables)
user_prompt = environment.from_string(get_settings().pr_custom_labels_prompt.user).render(self.variables)
response, finish_reason = await self.ai_handler.chat_completion(
model=model,
temperature=get_settings().config.temperature,
system=system_prompt,
user=user_prompt
)
return response
def _prepare_data(self):
# Load the AI prediction data into a dictionary
self.data = load_yaml(self.prediction.strip())
def _prepare_labels(self) -> List[str]:
pr_types = []
# If the 'labels' key is present in the dictionary, split its value by comma and assign it to 'pr_types'
if 'labels' in self.data:
if type(self.data['labels']) == list:
pr_types = self.data['labels']
elif type(self.data['labels']) == str:
pr_types = self.data['labels'].split(',')
pr_types = [label.strip() for label in pr_types]
# convert lowercase labels to original case
try:
if "labels_minimal_to_labels_dict" in self.variables:
d: dict = self.variables["labels_minimal_to_labels_dict"]
for i, label_i in enumerate(pr_types):
if label_i in d:
pr_types[i] = d[label_i]
except Exception as e:
get_logger().error(f"Error converting labels to original case {self.pr_id}: {e}")
return pr_types