from os import environ from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler import openai from openai import APIError, AsyncOpenAI, RateLimitError, Timeout from retry import retry from pr_agent.config_loader import get_settings from pr_agent.log import get_logger OPENAI_RETRIES = 5 class OpenAIHandler(BaseAiHandler): def __init__(self): # Initialize OpenAIHandler specific attributes here try: super().__init__() environ["OPENAI_API_KEY"] = get_settings().openai.key if get_settings().get("OPENAI.ORG", None): openai.organization = get_settings().openai.org if get_settings().get("OPENAI.API_TYPE", None): if get_settings().openai.api_type == "azure": self.azure = True openai.azure_key = get_settings().openai.key if get_settings().get("OPENAI.API_VERSION", None): openai.api_version = get_settings().openai.api_version if get_settings().get("OPENAI.API_BASE", None): environ["OPENAI_BASE_URL"] = get_settings().openai.api_base except AttributeError as e: raise ValueError("OpenAI key is required") from e @property def deployment_id(self): """ Returns the deployment ID for the OpenAI API. """ return get_settings().get("OPENAI.DEPLOYMENT_ID", None) @retry(exceptions=(APIError, Timeout, AttributeError, RateLimitError), tries=OPENAI_RETRIES, delay=2, backoff=2, jitter=(1, 3)) async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2): try: deployment_id = self.deployment_id get_logger().info("System: ", system) get_logger().info("User: ", user) messages = [{"role": "system", "content": system}, {"role": "user", "content": user}] client = AsyncOpenAI() chat_completion = await client.chat.completions.create( model=model, messages=messages, temperature=temperature, ) resp = chat_completion.choices[0].message.content finish_reason = chat_completion.choices[0].finish_reason usage = chat_completion.usage get_logger().info("AI response", response=resp, messages=messages, finish_reason=finish_reason, model=model, usage=usage) return resp, finish_reason except (APIError, Timeout) as e: get_logger().error("Error during OpenAI inference: ", e) raise except (RateLimitError) as e: get_logger().error("Rate limit error during OpenAI inference: ", e) raise except (Exception) as e: get_logger().error("Unknown error during OpenAI inference: ", e) raise