import asyncio import copy import difflib import re import textwrap from functools import partial from typing import Dict, List from jinja2 import Environment, StrictUndefined from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler from pr_agent.algo.ai_handlers.litellm_ai_handler import LiteLLMAIHandler from pr_agent.algo.pr_processing import (add_ai_metadata_to_diff_files, get_pr_diff, get_pr_multi_diffs, retry_with_fallback_models) from pr_agent.algo.token_handler import TokenHandler from pr_agent.algo.utils import (ModelType, load_yaml, replace_code_tags, show_relevant_configurations) from pr_agent.config_loader import get_settings from pr_agent.git_providers import (AzureDevopsProvider, GithubProvider, GitLabProvider, get_git_provider, get_git_provider_with_context) from pr_agent.git_providers.git_provider import get_main_pr_language from pr_agent.log import get_logger from pr_agent.servers.help import HelpMessage from pr_agent.tools.pr_description import insert_br_after_x_chars class PRCodeSuggestions: def __init__(self, pr_url: str, cli_mode=False, args: list = None, ai_handler: partial[BaseAiHandler,] = LiteLLMAIHandler): self.git_provider = get_git_provider_with_context(pr_url) self.main_language = get_main_pr_language( self.git_provider.get_languages(), self.git_provider.get_files() ) # limit context specifically for the improve command, which has hard input to parse: if get_settings().pr_code_suggestions.max_context_tokens: MAX_CONTEXT_TOKENS_IMPROVE = get_settings().pr_code_suggestions.max_context_tokens if get_settings().config.max_model_tokens > MAX_CONTEXT_TOKENS_IMPROVE: get_logger().info(f"Setting max_model_tokens to {MAX_CONTEXT_TOKENS_IMPROVE} for PR improve") get_settings().config.max_model_tokens_original = get_settings().config.max_model_tokens get_settings().config.max_model_tokens = MAX_CONTEXT_TOKENS_IMPROVE # extended mode try: self.is_extended = self._get_is_extended(args or []) except: self.is_extended = False num_code_suggestions = get_settings().pr_code_suggestions.num_code_suggestions_per_chunk self.ai_handler = ai_handler() self.ai_handler.main_pr_language = self.main_language self.patches_diff = None self.prediction = None self.pr_url = pr_url self.cli_mode = cli_mode self.pr_description, self.pr_description_files = ( self.git_provider.get_pr_description(split_changes_walkthrough=True)) if (self.pr_description_files and get_settings().get("config.is_auto_command", False) and get_settings().get("config.enable_ai_metadata", False)): add_ai_metadata_to_diff_files(self.git_provider, self.pr_description_files) get_logger().debug(f"AI metadata added to the this command") else: get_settings().set("config.enable_ai_metadata", False) get_logger().debug(f"AI metadata is disabled for this command") self.vars = { "title": self.git_provider.pr.title, "branch": self.git_provider.get_pr_branch(), "description": self.pr_description, "language": self.main_language, "diff": "", # empty diff for initial calculation "num_code_suggestions": num_code_suggestions, "extra_instructions": get_settings().pr_code_suggestions.extra_instructions, "commit_messages_str": self.git_provider.get_commit_messages(), "relevant_best_practices": "", "is_ai_metadata": get_settings().get("config.enable_ai_metadata", False), } self.pr_code_suggestions_prompt_system = get_settings().pr_code_suggestions_prompt.system self.token_handler = TokenHandler(self.git_provider.pr, self.vars, self.pr_code_suggestions_prompt_system, get_settings().pr_code_suggestions_prompt.user) self.progress = f"## Generating PR code suggestions\n\n" self.progress += f"""\nWork in progress ...
\n""" self.progress_response = None async def run(self): try: if not self.git_provider.get_files(): get_logger().info(f"PR has no files: {self.pr_url}, skipping code suggestions") return None get_logger().info('Generating code suggestions for PR...') relevant_configs = {'pr_code_suggestions': dict(get_settings().pr_code_suggestions), 'config': dict(get_settings().config)} get_logger().debug("Relevant configs", artifacts=relevant_configs) if (get_settings().config.publish_output and get_settings().config.publish_output_progress and not get_settings().config.get('is_auto_command', False)): if self.git_provider.is_supported("gfm_markdown"): self.progress_response = self.git_provider.publish_comment(self.progress) else: self.git_provider.publish_comment("Preparing suggestions...", is_temporary=True) if not self.is_extended: data = await retry_with_fallback_models(self._prepare_prediction) else: data = await retry_with_fallback_models(self._prepare_prediction_extended) if not data: data = {"code_suggestions": []} if (data is None or 'code_suggestions' not in data or not data['code_suggestions'] and get_settings().config.publish_output): get_logger().warning('No code suggestions found for the PR.') pr_body = "## PR Code Suggestions ✨\n\nNo code suggestions found for the PR." get_logger().debug(f"PR output", artifact=pr_body) if self.progress_response: self.git_provider.edit_comment(self.progress_response, body=pr_body) else: self.git_provider.publish_comment(pr_body) return if (not self.is_extended and get_settings().pr_code_suggestions.rank_suggestions) or \ (self.is_extended and get_settings().pr_code_suggestions.rank_extended_suggestions): get_logger().info('Ranking Suggestions...') data['code_suggestions'] = await self.rank_suggestions(data['code_suggestions']) if get_settings().config.publish_output: self.git_provider.remove_initial_comment() if ((not get_settings().pr_code_suggestions.commitable_code_suggestions) and self.git_provider.is_supported("gfm_markdown")): # generate summarized suggestions pr_body = self.generate_summarized_suggestions(data) get_logger().debug(f"PR output", artifact=pr_body) # require self-review if get_settings().pr_code_suggestions.demand_code_suggestions_self_review: text = get_settings().pr_code_suggestions.code_suggestions_self_review_text pr_body += f"\n\n- [ ] {text}" if get_settings().pr_code_suggestions.approve_pr_on_self_review: pr_body += ' ' # add usage guide if (get_settings().pr_code_suggestions.enable_chat_text and get_settings().config.is_auto_command and isinstance(self.git_provider, GithubProvider)): pr_body += "\n\n>💡 Need additional feedback ? start a [PR chat](https://chromewebstore.google.com/detail/ephlnjeghhogofkifjloamocljapahnl) \n\n" if get_settings().pr_code_suggestions.enable_help_text: pr_body += "
\n\n
💡 Tool usage guide:
\n\n" pr_body += HelpMessage.get_improve_usage_guide() pr_body += "\n
\n" # Output the relevant configurations if enabled if get_settings().get('config', {}).get('output_relevant_configurations', False): pr_body += show_relevant_configurations(relevant_section='pr_code_suggestions') # publish the PR comment if get_settings().pr_code_suggestions.persistent_comment: final_update_message = False self.publish_persistent_comment_with_history(pr_body, initial_header="## PR Code Suggestions ✨", update_header=True, name="suggestions", final_update_message=final_update_message, max_previous_comments=get_settings().pr_code_suggestions.max_history_len, progress_response=self.progress_response) else: if self.progress_response: self.git_provider.edit_comment(self.progress_response, body=pr_body) else: self.git_provider.publish_comment(pr_body) # dual publishing mode if int(get_settings().pr_code_suggestions.dual_publishing_score_threshold) > 0: data_above_threshold = {'code_suggestions': []} try: for suggestion in data['code_suggestions']: if int(suggestion.get('score', 0)) >= int(get_settings().pr_code_suggestions.dual_publishing_score_threshold) \ and suggestion.get('improved_code'): data_above_threshold['code_suggestions'].append(suggestion) if not data_above_threshold['code_suggestions'][-1]['existing_code']: get_logger().info(f'Identical existing and improved code for dual publishing found') data_above_threshold['code_suggestions'][-1]['existing_code'] = suggestion[ 'improved_code'] if data_above_threshold['code_suggestions']: get_logger().info( f"Publishing {len(data_above_threshold['code_suggestions'])} suggestions in dual publishing mode") self.push_inline_code_suggestions(data_above_threshold) except Exception as e: get_logger().error(f"Failed to publish dual publishing suggestions, error: {e}") else: self.push_inline_code_suggestions(data) if self.progress_response: self.git_provider.remove_comment(self.progress_response) else: get_logger().info('Code suggestions generated for PR, but not published since publish_output is False.') except Exception as e: get_logger().error(f"Failed to generate code suggestions for PR, error: {e}") if get_settings().config.publish_output: if self.progress_response: self.progress_response.delete() else: try: self.git_provider.remove_initial_comment() self.git_provider.publish_comment(f"Failed to generate code suggestions for PR") except Exception as e: pass def publish_persistent_comment_with_history(self, pr_comment: str, initial_header: str, update_header: bool = True, name='review', final_update_message=True, max_previous_comments=4, progress_response=None): if isinstance(self.git_provider, AzureDevopsProvider): # get_latest_commit_url is not supported yet if progress_response: self.git_provider.edit_comment(progress_response, pr_comment) else: self.git_provider.publish_comment(pr_comment) return history_header = f"#### Previous suggestions\n" last_commit_num = self.git_provider.get_latest_commit_url().split('/')[-1][:7] latest_suggestion_header = f"Latest suggestions up to {last_commit_num}" latest_commit_html_comment = f"" found_comment = None if max_previous_comments > 0: try: prev_comments = list(self.git_provider.get_issue_comments()) for comment in prev_comments: if comment.body.startswith(initial_header): prev_suggestions = comment.body found_comment = comment comment_url = self.git_provider.get_comment_url(comment) if history_header.strip() not in comment.body: # no history section # extract everything between and
in comment.body including and
table_index = comment.body.find("") if table_index == -1: self.git_provider.edit_comment(comment, pr_comment) continue # find http link from comment.body[:table_index] up_to_commit_txt = self.extract_link(comment.body[:table_index]) prev_suggestion_table = comment.body[ table_index:comment.body.rfind("
") + len("")] tick = "✅ " if "✅" in prev_suggestion_table else "" # surround with details tag prev_suggestion_table = f"
{tick}{name.capitalize()}{up_to_commit_txt}\n
{prev_suggestion_table}\n\n
" new_suggestion_table = pr_comment.replace(initial_header, "").strip() pr_comment_updated = f"{initial_header}\n{latest_commit_html_comment}\n\n" pr_comment_updated += f"{latest_suggestion_header}\n{new_suggestion_table}\n\n___\n\n" pr_comment_updated += f"{history_header}{prev_suggestion_table}\n" else: # get the text of the previous suggestions until the latest commit sections = prev_suggestions.split(history_header.strip()) latest_table = sections[0].strip() prev_suggestion_table = sections[1].replace(history_header, "").strip() # get text after the latest_suggestion_header in comment.body table_ind = latest_table.find("") up_to_commit_txt = self.extract_link(latest_table[:table_ind]) latest_table = latest_table[table_ind:latest_table.rfind("
") + len("")] # enforce max_previous_comments count = prev_suggestions.count(f"\n
{name.capitalize()}") count += prev_suggestions.count(f"\n
✅ {name.capitalize()}") if count >= max_previous_comments: # remove the oldest suggestion prev_suggestion_table = prev_suggestion_table[:prev_suggestion_table.rfind( f"
{name.capitalize()} up to commit")] tick = "✅ " if "✅" in latest_table else "" # Add to the prev_suggestions section last_prev_table = f"\n
{tick}{name.capitalize()}{up_to_commit_txt}\n
{latest_table}\n\n
" prev_suggestion_table = last_prev_table + "\n" + prev_suggestion_table new_suggestion_table = pr_comment.replace(initial_header, "").strip() pr_comment_updated = f"{initial_header}\n" pr_comment_updated += f"{latest_commit_html_comment}\n\n" pr_comment_updated += f"{latest_suggestion_header}\n\n{new_suggestion_table}\n\n" pr_comment_updated += "___\n\n" pr_comment_updated += f"{history_header}\n" pr_comment_updated += f"{prev_suggestion_table}\n" get_logger().info(f"Persistent mode - updating comment {comment_url} to latest {name} message") if progress_response: # publish to 'progress_response' comment, because it refreshes immediately self.git_provider.edit_comment(progress_response, pr_comment_updated) self.git_provider.remove_comment(comment) else: self.git_provider.edit_comment(comment, pr_comment_updated) return except Exception as e: get_logger().exception(f"Failed to update persistent review, error: {e}") pass # if we are here, we did not find a previous comment to update body = pr_comment.replace(initial_header, "").strip() pr_comment = f"{initial_header}\n\n{latest_commit_html_comment}\n\n{body}\n\n" if progress_response: self.git_provider.edit_comment(progress_response, pr_comment) else: self.git_provider.publish_comment(pr_comment) def extract_link(self, s): r = re.compile(r"") match = r.search(s) up_to_commit_txt = "" if match: up_to_commit_txt = f" up to commit {match.group(0)[4:-3].strip()}" return up_to_commit_txt async def _prepare_prediction(self, model: str) -> dict: self.patches_diff = get_pr_diff(self.git_provider, self.token_handler, model, add_line_numbers_to_hunks=True, disable_extra_lines=False) if self.patches_diff: get_logger().debug(f"PR diff", artifact=self.patches_diff) self.prediction = await self._get_prediction(model, self.patches_diff) else: get_logger().warning(f"Empty PR diff") self.prediction = None data = self.prediction return data async def _get_prediction(self, model: str, patches_diff: str) -> dict: variables = copy.deepcopy(self.vars) variables["diff"] = patches_diff # update diff environment = Environment(undefined=StrictUndefined) system_prompt = environment.from_string(self.pr_code_suggestions_prompt_system).render(variables) user_prompt = environment.from_string(get_settings().pr_code_suggestions_prompt.user).render(variables) response, finish_reason = await self.ai_handler.chat_completion( model=model, temperature=get_settings().config.temperature, system=system_prompt, user=user_prompt) # load suggestions from the AI response data = self._prepare_pr_code_suggestions(response) # self-reflect on suggestions if get_settings().pr_code_suggestions.self_reflect_on_suggestions: model_turbo = get_settings().config.model_turbo # use turbo model for self-reflection, since it is an easier task response_reflect = await self.self_reflect_on_suggestions(data["code_suggestions"], patches_diff, model=model_turbo) if response_reflect: response_reflect_yaml = load_yaml(response_reflect) code_suggestions_feedback = response_reflect_yaml["code_suggestions"] if len(code_suggestions_feedback) == len(data["code_suggestions"]): for i, suggestion in enumerate(data["code_suggestions"]): try: suggestion["score"] = code_suggestions_feedback[i]["suggestion_score"] suggestion["score_why"] = code_suggestions_feedback[i]["why"] except Exception as e: # get_logger().error(f"Error processing suggestion score {i}", artifact={"suggestion": suggestion, "code_suggestions_feedback": code_suggestions_feedback[i]}) suggestion["score"] = 7 suggestion["score_why"] = "" else: # get_logger().error(f"Could not self-reflect on suggestions. using default score 7") for i, suggestion in enumerate(data["code_suggestions"]): suggestion["score"] = 7 suggestion["score_why"] = "" return data @staticmethod def _truncate_if_needed(suggestion): max_code_suggestion_length = get_settings().get("PR_CODE_SUGGESTIONS.MAX_CODE_SUGGESTION_LENGTH", 0) suggestion_truncation_message = get_settings().get("PR_CODE_SUGGESTIONS.SUGGESTION_TRUNCATION_MESSAGE", "") if max_code_suggestion_length > 0: if len(suggestion['improved_code']) > max_code_suggestion_length: suggestion['improved_code'] = suggestion['improved_code'][:max_code_suggestion_length] suggestion['improved_code'] += f"\n{suggestion_truncation_message}" get_logger().info(f"Truncated suggestion from {len(suggestion['improved_code'])} " f"characters to {max_code_suggestion_length} characters") return suggestion def _prepare_pr_code_suggestions(self, predictions: str) -> Dict: data = load_yaml(predictions.strip(), keys_fix_yaml=["relevant_file", "suggestion_content", "existing_code", "improved_code"], first_key="code_suggestions", last_key="label") if isinstance(data, list): data = {'code_suggestions': data} # remove or edit invalid suggestions suggestion_list = [] one_sentence_summary_list = [] for i, suggestion in enumerate(data['code_suggestions']): try: needed_keys = ['one_sentence_summary', 'label', 'relevant_file', 'relevant_lines_start', 'relevant_lines_end'] is_valid_keys = True for key in needed_keys: if key not in suggestion: is_valid_keys = False get_logger().debug( f"Skipping suggestion {i + 1}, because it does not contain '{key}':\n'{suggestion}") break if not is_valid_keys: continue if suggestion['one_sentence_summary'] in one_sentence_summary_list: get_logger().debug(f"Skipping suggestion {i + 1}, because it is a duplicate: {suggestion}") continue if 'const' in suggestion['suggestion_content'] and 'instead' in suggestion[ 'suggestion_content'] and 'let' in suggestion['suggestion_content']: get_logger().debug( f"Skipping suggestion {i + 1}, because it uses 'const instead let': {suggestion}") continue if ('existing_code' in suggestion) and ('improved_code' in suggestion): if suggestion['existing_code'] == suggestion['improved_code']: get_logger().debug( f"edited improved suggestion {i + 1}, because equal to existing code: {suggestion['existing_code']}") if get_settings().pr_code_suggestions.commitable_code_suggestions: suggestion['improved_code'] = "" # we need 'existing_code' to locate the code in the PR else: suggestion['existing_code'] = "" suggestion = self._truncate_if_needed(suggestion) one_sentence_summary_list.append(suggestion['one_sentence_summary']) suggestion_list.append(suggestion) else: get_logger().info( f"Skipping suggestion {i + 1}, because it does not contain 'existing_code' or 'improved_code': {suggestion}") except Exception as e: get_logger().error(f"Error processing suggestion {i + 1}: {suggestion}, error: {e}") data['code_suggestions'] = suggestion_list return data def push_inline_code_suggestions(self, data): code_suggestions = [] if not data['code_suggestions']: get_logger().info('No suggestions found to improve this PR.') if self.progress_response: return self.git_provider.edit_comment(self.progress_response, body='No suggestions found to improve this PR.') else: return self.git_provider.publish_comment('No suggestions found to improve this PR.') for d in data['code_suggestions']: try: if get_settings().config.verbosity_level >= 2: get_logger().info(f"suggestion: {d}") relevant_file = d['relevant_file'].strip() relevant_lines_start = int(d['relevant_lines_start']) # absolute position relevant_lines_end = int(d['relevant_lines_end']) content = d['suggestion_content'].rstrip() new_code_snippet = d['improved_code'].rstrip() label = d['label'].strip() if new_code_snippet: new_code_snippet = self.dedent_code(relevant_file, relevant_lines_start, new_code_snippet) if d.get('score'): body = f"**Suggestion:** {content} [{label}, importance: {d.get('score')}]\n```suggestion\n" + new_code_snippet + "\n```" else: body = f"**Suggestion:** {content} [{label}]\n```suggestion\n" + new_code_snippet + "\n```" code_suggestions.append({'body': body, 'relevant_file': relevant_file, 'relevant_lines_start': relevant_lines_start, 'relevant_lines_end': relevant_lines_end, 'original_suggestion': d}) except Exception: get_logger().info(f"Could not parse suggestion: {d}") is_successful = self.git_provider.publish_code_suggestions(code_suggestions) if not is_successful: get_logger().info("Failed to publish code suggestions, trying to publish each suggestion separately") for code_suggestion in code_suggestions: self.git_provider.publish_code_suggestions([code_suggestion]) def dedent_code(self, relevant_file, relevant_lines_start, new_code_snippet): try: # dedent code snippet self.diff_files = self.git_provider.diff_files if self.git_provider.diff_files \ else self.git_provider.get_diff_files() original_initial_line = None for file in self.diff_files: if file.filename.strip() == relevant_file: if file.head_file: file_lines = file.head_file.splitlines() if relevant_lines_start > len(file_lines): get_logger().warning( "Could not dedent code snippet, because relevant_lines_start is out of range", artifact={'filename': file.filename, 'file_content': file.head_file, 'relevant_lines_start': relevant_lines_start, 'new_code_snippet': new_code_snippet}) return new_code_snippet else: original_initial_line = file_lines[relevant_lines_start - 1] else: get_logger().warning("Could not dedent code snippet, because head_file is missing", artifact={'filename': file.filename, 'relevant_lines_start': relevant_lines_start, 'new_code_snippet': new_code_snippet}) return new_code_snippet break if original_initial_line: suggested_initial_line = new_code_snippet.splitlines()[0] original_initial_spaces = len(original_initial_line) - len(original_initial_line.lstrip()) suggested_initial_spaces = len(suggested_initial_line) - len(suggested_initial_line.lstrip()) delta_spaces = original_initial_spaces - suggested_initial_spaces if delta_spaces > 0: new_code_snippet = textwrap.indent(new_code_snippet, delta_spaces * " ").rstrip('\n') except Exception as e: get_logger().error(f"Error when dedenting code snippet for file {relevant_file}, error: {e}") return new_code_snippet def _get_is_extended(self, args: list[str]) -> bool: """Check if extended mode should be enabled by the `--extended` flag or automatically according to the configuration""" if any(["extended" in arg for arg in args]): get_logger().info("Extended mode is enabled by the `--extended` flag") return True if get_settings().pr_code_suggestions.auto_extended_mode: # get_logger().info("Extended mode is enabled automatically based on the configuration toggle") return True return False async def _prepare_prediction_extended(self, model: str) -> dict: self.patches_diff_list = get_pr_multi_diffs(self.git_provider, self.token_handler, model, max_calls=get_settings().pr_code_suggestions.max_number_of_calls) if self.patches_diff_list: get_logger().info(f"Number of PR chunk calls: {len(self.patches_diff_list)}") get_logger().debug(f"PR diff:", artifact=self.patches_diff_list) # parallelize calls to AI: if get_settings().pr_code_suggestions.parallel_calls: prediction_list = await asyncio.gather( *[self._get_prediction(model, patches_diff) for patches_diff in self.patches_diff_list]) self.prediction_list = prediction_list else: prediction_list = [] for i, patches_diff in enumerate(self.patches_diff_list): prediction = await self._get_prediction(model, patches_diff) prediction_list.append(prediction) data = {"code_suggestions": []} for j, predictions in enumerate(prediction_list): # each call adds an element to the list if "code_suggestions" in predictions: score_threshold = max(1, int(get_settings().pr_code_suggestions.suggestions_score_threshold)) for i, prediction in enumerate(predictions["code_suggestions"]): try: if get_settings().pr_code_suggestions.self_reflect_on_suggestions: score = int(prediction.get("score", 1)) if score >= score_threshold: data["code_suggestions"].append(prediction) else: get_logger().info( f"Removing suggestions {i} from call {j}, because score is {score}, and score_threshold is {score_threshold}", artifact=prediction) else: data["code_suggestions"].append(prediction) except Exception as e: get_logger().error(f"Error getting PR diff for suggestion {i} in call {j}, error: {e}") self.data = data else: get_logger().warning(f"Empty PR diff list") self.data = data = None return data async def rank_suggestions(self, data: List) -> List: """ Call a model to rank (sort) code suggestions based on their importance order. Args: data (List): A list of code suggestions to be ranked. Returns: List: The ranked list of code suggestions. """ suggestion_list = [] if not data: return suggestion_list for suggestion in data: suggestion_list.append(suggestion) data_sorted = [[]] * len(suggestion_list) if len(suggestion_list) == 1: return suggestion_list try: suggestion_str = "" for i, suggestion in enumerate(suggestion_list): suggestion_str += f"suggestion {i + 1}: " + str(suggestion) + '\n\n' variables = {'suggestion_list': suggestion_list, 'suggestion_str': suggestion_str} model = get_settings().config.model environment = Environment(undefined=StrictUndefined) system_prompt = environment.from_string(get_settings().pr_sort_code_suggestions_prompt.system).render( variables) user_prompt = environment.from_string(get_settings().pr_sort_code_suggestions_prompt.user).render(variables) response, finish_reason = await self.ai_handler.chat_completion(model=model, system=system_prompt, user=user_prompt) sort_order = load_yaml(response) for s in sort_order['Sort Order']: suggestion_number = s['suggestion number'] importance_order = s['importance order'] data_sorted[importance_order - 1] = suggestion_list[suggestion_number - 1] if get_settings().pr_code_suggestions.final_clip_factor != 1: max_len = max( len(data_sorted), get_settings().pr_code_suggestions.num_code_suggestions_per_chunk, ) new_len = int(0.5 + max_len * get_settings().pr_code_suggestions.final_clip_factor) if new_len < len(data_sorted): data_sorted = data_sorted[:new_len] except Exception as e: if get_settings().config.verbosity_level >= 1: get_logger().info(f"Could not sort suggestions, error: {e}") data_sorted = suggestion_list return data_sorted def generate_summarized_suggestions(self, data: Dict) -> str: try: pr_body = "## PR Code Suggestions ✨\n\n" if len(data.get('code_suggestions', [])) == 0: pr_body += "No suggestions found to improve this PR." return pr_body if get_settings().pr_code_suggestions.enable_intro_text and get_settings().config.is_auto_command: pr_body += "Explore these optional code suggestions:\n\n" language_extension_map_org = get_settings().language_extension_map_org extension_to_language = {} for language, extensions in language_extension_map_org.items(): for ext in extensions: extension_to_language[ext] = language pr_body += "" header = f"Suggestion" delta = 66 header += "  " * delta if get_settings().pr_code_suggestions.self_reflect_on_suggestions: pr_body += f"""""" else: pr_body += f"""""" pr_body += """""" suggestions_labels = dict() # add all suggestions related to each label for suggestion in data['code_suggestions']: label = suggestion['label'].strip().strip("'").strip('"') if label not in suggestions_labels: suggestions_labels[label] = [] suggestions_labels[label].append(suggestion) # sort suggestions_labels by the suggestion with the highest score if get_settings().pr_code_suggestions.self_reflect_on_suggestions: suggestions_labels = dict( sorted(suggestions_labels.items(), key=lambda x: max([s['score'] for s in x[1]]), reverse=True)) # sort the suggestions inside each label group by score for label, suggestions in suggestions_labels.items(): suggestions_labels[label] = sorted(suggestions, key=lambda x: x['score'], reverse=True) counter_suggestions = 0 for label, suggestions in suggestions_labels.items(): num_suggestions = len(suggestions) pr_body += f"""\n""" for i, suggestion in enumerate(suggestions): relevant_file = suggestion['relevant_file'].strip() relevant_lines_start = int(suggestion['relevant_lines_start']) relevant_lines_end = int(suggestion['relevant_lines_end']) range_str = "" if relevant_lines_start == relevant_lines_end: range_str = f"[{relevant_lines_start}]" else: range_str = f"[{relevant_lines_start}-{relevant_lines_end}]" try: code_snippet_link = self.git_provider.get_line_link(relevant_file, relevant_lines_start, relevant_lines_end) except: code_snippet_link = "" # add html table for each suggestion suggestion_content = suggestion['suggestion_content'].rstrip() CHAR_LIMIT_PER_LINE = 84 suggestion_content = insert_br_after_x_chars(suggestion_content, CHAR_LIMIT_PER_LINE) # pr_body += f"" counter_suggestions += 1 # pr_body += "" # pr_body += """""" pr_body += """
Category{header}Score
Category{header}
{label.capitalize()}
{suggestion_content}" existing_code = suggestion['existing_code'].rstrip() + "\n" improved_code = suggestion['improved_code'].rstrip() + "\n" diff = difflib.unified_diff(existing_code.split('\n'), improved_code.split('\n'), n=999) patch_orig = "\n".join(diff) patch = "\n".join(patch_orig.splitlines()[5:]).strip('\n') example_code = "" example_code += f"```diff\n{patch.rstrip()}\n```\n" if i == 0: pr_body += f"""
\n\n""" else: pr_body += f"""
\n\n""" suggestion_summary = suggestion['one_sentence_summary'].strip().rstrip('.') if "'<" in suggestion_summary and ">'" in suggestion_summary: # escape the '<' and '>' characters, otherwise they are interpreted as html tags get_logger().info(f"Escaped suggestion summary: {suggestion_summary}") suggestion_summary = suggestion_summary.replace("'<", "`<") suggestion_summary = suggestion_summary.replace(">'", ">`") if '`' in suggestion_summary: suggestion_summary = replace_code_tags(suggestion_summary) pr_body += f"""\n\n
{suggestion_summary}\n\n___\n\n""" pr_body += f""" **{suggestion_content}** [{relevant_file} {range_str}]({code_snippet_link}) {example_code.rstrip()} """ if get_settings().pr_code_suggestions.self_reflect_on_suggestions: pr_body += f"
Suggestion importance[1-10]: {suggestion['score']}\n\n" pr_body += f"Why: {suggestion['score_why']}\n\n" pr_body += f"
" pr_body += f"
" # # add another column for 'score' if get_settings().pr_code_suggestions.self_reflect_on_suggestions: pr_body += f"
{suggestion['score']}\n\n" pr_body += f"
""" return pr_body except Exception as e: get_logger().info(f"Failed to publish summarized code suggestions, error: {e}") return "" async def self_reflect_on_suggestions(self, suggestion_list: List, patches_diff: str, model: str) -> str: if not suggestion_list: return "" try: suggestion_str = "" for i, suggestion in enumerate(suggestion_list): suggestion_str += f"suggestion {i + 1}: " + str(suggestion) + '\n\n' variables = {'suggestion_list': suggestion_list, 'suggestion_str': suggestion_str, "diff": patches_diff, 'num_code_suggestions': len(suggestion_list), "is_ai_metadata": get_settings().get("config.enable_ai_metadata", False)} environment = Environment(undefined=StrictUndefined) system_prompt_reflect = environment.from_string( get_settings().pr_code_suggestions_reflect_prompt.system).render( variables) user_prompt_reflect = environment.from_string( get_settings().pr_code_suggestions_reflect_prompt.user).render(variables) with get_logger().contextualize(command="self_reflect_on_suggestions"): response_reflect, finish_reason_reflect = await self.ai_handler.chat_completion(model=model, system=system_prompt_reflect, user=user_prompt_reflect) except Exception as e: get_logger().info(f"Could not reflect on suggestions, error: {e}") return "" return response_reflect