try: from langchain_core.messages import HumanMessage, SystemMessage from langchain_openai import AzureChatOpenAI, ChatOpenAI except: # we don't enforce langchain as a dependency, so if it's not installed, just move on pass import functools from openai import APIError, RateLimitError, Timeout from retry import retry from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler from pr_agent.config_loader import get_settings from pr_agent.log import get_logger OPENAI_RETRIES = 5 class LangChainOpenAIHandler(BaseAiHandler): def __init__(self): # Initialize OpenAIHandler specific attributes here super().__init__() self.azure = get_settings().get("OPENAI.API_TYPE", "").lower() == "azure" # Create a default unused chat object to trigger early validation self._create_chat(self.deployment_id) def chat(self, messages: list, model: str, temperature: float): chat = self._create_chat(self.deployment_id) return chat.invoke(input=messages, model=model, temperature=temperature) @property def deployment_id(self): """ Returns the deployment ID for the OpenAI API. """ return get_settings().get("OPENAI.DEPLOYMENT_ID", None) @retry(exceptions=(APIError, Timeout, AttributeError, RateLimitError), tries=OPENAI_RETRIES, delay=2, backoff=2, jitter=(1, 3)) async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2): try: messages = [SystemMessage(content=system), HumanMessage(content=user)] # get a chat completion from the formatted messages resp = self.chat(messages, model=model, temperature=temperature) finish_reason = "completed" return resp.content, finish_reason except (Exception) as e: get_logger().error("Unknown error during OpenAI inference: ", e) raise e def _create_chat(self, deployment_id=None): try: if self.azure: # using a partial function so we can set the deployment_id later to support fallback_deployments # but still need to access the other settings now so we can raise a proper exception if they're missing return AzureChatOpenAI( openai_api_key=get_settings().openai.key, openai_api_version=get_settings().openai.api_version, azure_deployment=deployment_id, azure_endpoint=get_settings().openai.api_base, ) else: # for llms that compatible with openai, should use custom api base openai_api_base = get_settings().get("OPENAI.API_BASE", None) if openai_api_base is None or len(openai_api_base) == 0: return ChatOpenAI(openai_api_key=get_settings().openai.key) else: return ChatOpenAI(openai_api_key=get_settings().openai.key, openai_api_base=openai_api_base) except AttributeError as e: if getattr(e, "name"): raise ValueError(f"OpenAI {e.name} is required") from e else: raise e