import copy from functools import partial from jinja2 import Environment, StrictUndefined from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler from pr_agent.algo.ai_handlers.litellm_ai_handler import LiteLLMAIHandler from pr_agent.algo.pr_processing import get_pr_diff, retry_with_fallback_models from pr_agent.algo.token_handler import TokenHandler from pr_agent.algo.utils import ModelType from pr_agent.config_loader import get_settings from pr_agent.git_providers import get_git_provider from pr_agent.git_providers.git_provider import get_main_pr_language from pr_agent.log import get_logger from pr_agent.servers.help import HelpMessage class PRQuestions: def __init__(self, pr_url: str, args=None, ai_handler: partial[BaseAiHandler,] = LiteLLMAIHandler): question_str = self.parse_args(args) self.pr_url = pr_url self.git_provider = get_git_provider()(pr_url) self.main_pr_language = get_main_pr_language( self.git_provider.get_languages(), self.git_provider.get_files() ) self.ai_handler = ai_handler() self.ai_handler.main_pr_language = self.main_pr_language self.question_str = question_str self.vars = { "title": self.git_provider.pr.title, "branch": self.git_provider.get_pr_branch(), "description": self.git_provider.get_pr_description(), "language": self.main_pr_language, "diff": "", # empty diff for initial calculation "questions": self.question_str, "commit_messages_str": self.git_provider.get_commit_messages(), } self.token_handler = TokenHandler(self.git_provider.pr, self.vars, get_settings().pr_questions_prompt.system, get_settings().pr_questions_prompt.user) self.patches_diff = None self.prediction = None def parse_args(self, args): if args and len(args) > 0: question_str = " ".join(args) else: question_str = "" return question_str async def run(self): get_logger().info(f'Answering a PR question about the PR {self.pr_url} ') relevant_configs = {'pr_questions': dict(get_settings().pr_questions), 'config': dict(get_settings().config)} get_logger().debug("Relevant configs", artifacts=relevant_configs) if get_settings().config.publish_output: self.git_provider.publish_comment("Preparing answer...", is_temporary=True) # identify image img_path = self.identify_image_in_comment() if img_path: get_logger().debug(f"Image path identified", artifact=img_path) await retry_with_fallback_models(self._prepare_prediction, model_type=ModelType.TURBO) pr_comment = self._prepare_pr_answer() get_logger().debug(f"PR output", artifact=pr_comment) if self.git_provider.is_supported("gfm_markdown") and get_settings().pr_questions.enable_help_text: pr_comment += "
\n\n
💡 Tool usage guide:
\n\n" pr_comment += HelpMessage.get_ask_usage_guide() pr_comment += "\n
\n" if get_settings().config.publish_output: self.git_provider.publish_comment(pr_comment) self.git_provider.remove_initial_comment() return "" def identify_image_in_comment(self): img_path = '' if '![image]' in self.question_str: # assuming structure: # /ask question ... > ![image](img_path) img_path = self.question_str.split('![image]')[1].strip().strip('()') self.vars['img_path'] = img_path elif 'https://' in self.question_str and ('.png' in self.question_str or 'jpg' in self.question_str): # direct image link # include https:// in the image path img_path = 'https://' + self.question_str.split('https://')[1] self.vars['img_path'] = img_path return img_path async def _prepare_prediction(self, model: str): self.patches_diff = get_pr_diff(self.git_provider, self.token_handler, model) if self.patches_diff: get_logger().debug(f"PR diff", artifact=self.patches_diff) self.prediction = await self._get_prediction(model) else: get_logger().error(f"Error getting PR diff") self.prediction = "" async def _get_prediction(self, model: str): variables = copy.deepcopy(self.vars) variables["diff"] = self.patches_diff # update diff environment = Environment(undefined=StrictUndefined) system_prompt = environment.from_string(get_settings().pr_questions_prompt.system).render(variables) user_prompt = environment.from_string(get_settings().pr_questions_prompt.user).render(variables) if 'img_path' in variables: img_path = self.vars['img_path'] response, finish_reason = await (self.ai_handler.chat_completion (model=model, temperature=get_settings().config.temperature, system=system_prompt, user=user_prompt, img_path=img_path)) else: response, finish_reason = await self.ai_handler.chat_completion( model=model, temperature=get_settings().config.temperature, system=system_prompt, user=user_prompt) return response def _prepare_pr_answer(self) -> str: answer_str = f"### **Ask**❓\n{self.question_str}\n\n" answer_str += f"### **Answer:**\n{self.prediction.strip()}\n\n" return answer_str