Compare commits

..

2 Commits

Author SHA1 Message Date
eee6252f6d Add ability to work with litellm debugger 2023-09-06 18:31:14 +03:00
dd8c992dad Add ability to work with litellm debugger 2023-09-06 18:27:31 +03:00
35 changed files with 195 additions and 818 deletions

View File

@ -24,7 +24,4 @@ jobs:
OPENAI_KEY: ${{ secrets.OPENAI_KEY }}
OPENAI_ORG: ${{ secrets.OPENAI_ORG }} # optional
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
PINECONE.API_KEY: ${{ secrets.PINECONE_API_KEY }}
PINECONE.ENVIRONMENT: ${{ secrets.PINECONE_ENVIRONMENT }}

View File

@ -1 +1 @@
FROM codiumai/pr-agent:0.7-github_action
FROM codiumai/pr-agent:github_action

View File

@ -24,15 +24,9 @@ To request a review for a PR, or ask a question about a PR, you can run directly
1. To request a review for a PR, run the following command:
For GitHub:
```
docker run --rm -it -e OPENAI.KEY=<your key> -e GITHUB.USER_TOKEN=<your token> codiumai/pr-agent --pr_url <pr_url> review
```
For GitLab:
```
docker run --rm -it -e OPENAI.KEY=<your key> -e CONFIG.GIT_PROVIDER=gitlab -e GITLAB.PERSONAL_ACCESS_TOKEN=<your token> codiumai/pr-agent --pr_url <pr_url> review
```
For other git providers, update CONFIG.GIT_PROVIDER accordingly, and check the `pr_agent/settings/.secrets_template.toml` file for the environment variables expected names and values.
2. To ask a question about a PR, run the following command:
@ -360,7 +354,7 @@ PYTHONPATH="/PATH/TO/PROJECTS/pr-agent" python pr_agent/cli.py \
```
WEBHOOK_SECRET=$(python -c "import secrets; print(secrets.token_hex(10))")
```
3. Follow the instructions to build the Docker image, setup a secrets file and deploy on your own server from [Method 5](#method-5-run-as-a-github-app) steps 4-7.
3. Follow the instructions to build the Docker image, setup a secrets file and deploy on your own server from [Method 5](#method-5-run-as-a-github-app).
4. In the secrets file, fill in the following:
- Your OpenAI key.
- In the [gitlab] section, fill in personal_access_token and shared_secret. The access token can be a personal access token, or a group or project access token.
@ -369,5 +363,11 @@ WEBHOOK_SECRET=$(python -c "import secrets; print(secrets.token_hex(10))")
In the "Trigger" section, check the comments and merge request events boxes.
6. Test your installation by opening a merge request or commenting or a merge request using one of CodiumAI's commands.
---
=======
### Appendix - **Debugging LLM API Calls**
If you're testing your codium/pr-agent server, and need to see if calls were made successfully + the exact call logs, you can use the [LiteLLM Debugger tool](https://docs.litellm.ai/docs/debugging/hosted_debugging).
You can do this by setting `litellm_debugger=true` in configuration.toml. Your Logs will be viewable in real-time @ `admin.litellm.ai/<your_email>`. Set your email in the `.secrets.toml` under 'user_email'.
<img src="./pics/debugger.png" width="800"/>

View File

@ -15,22 +15,20 @@ Making pull requests less painful with an AI agent
</div>
<div style="text-align:left;">
CodiumAI `PR-Agent` is an open-source tool aiming to help developers review pull requests faster and more efficiently. It automatically analyzes the pull request and can provide several types of commands:
CodiumAI `PR-Agent` is an open-source tool aiming to help developers review pull requests faster and more efficiently. It automatically analyzes the pull request and can provide several types of PR feedback:
**Auto Description (`/describe`)**: Automatically generating [PR description](https://github.com/Codium-ai/pr-agent/pull/229#issue-1860711415) - title, type, summary, code walkthrough and labels.
**Auto Description (/describe)**: Automatically generating [PR description](https://github.com/Codium-ai/pr-agent/pull/229#issue-1860711415) - title, type, summary, code walkthrough and labels.
\
**Auto Review (`/review`)**: [Adjustable feedback](https://github.com/Codium-ai/pr-agent/pull/229#issuecomment-1695022908) about the PR main theme, type, relevant tests, security issues, score, and various suggestions for the PR content.
**Auto Review (/review)**: [Adjustable feedback](https://github.com/Codium-ai/pr-agent/pull/229#issuecomment-1695022908) about the PR main theme, type, relevant tests, security issues, score, and various suggestions for the PR content.
\
**Question Answering (`/ask ...`)**: Answering [free-text questions](https://github.com/Codium-ai/pr-agent/pull/229#issuecomment-1695021332) about the PR.
**Question Answering (/ask ...)**: Answering [free-text questions](https://github.com/Codium-ai/pr-agent/pull/229#issuecomment-1695021332) about the PR.
\
**Code Suggestions (`/improve`)**: [Committable code suggestions](https://github.com/Codium-ai/pr-agent/pull/229#discussion_r1306919276) for improving the PR.
**Code Suggestions (/improve)**: [Committable code suggestions](https://github.com/Codium-ai/pr-agent/pull/229#discussion_r1306919276) for improving the PR.
\
**Update Changelog (`/update_changelog`)**: Automatically updating the CHANGELOG.md file with the [PR changes](https://github.com/Codium-ai/pr-agent/pull/168#discussion_r1282077645).
\
**Find similar issue (`/similar_issue`)**: Automatically retrieves and presents [similar issues](https://github.com/Alibaba-MIIL/ASL/issues/107).
**Update Changelog (/update_changelog)**: Automatically updating the CHANGELOG.md file with the [PR changes](https://github.com/Codium-ai/pr-agent/pull/168#discussion_r1282077645).
See the [usage guide](./Usage.md) for instructions how to run the different tools from [CLI](./Usage.md#working-from-a-local-repo-cli), or by [online usage](./Usage.md#online-usage), as well as additional details on optional commands and configurations.
See the [usage guide](./Usage.md) for instructions how to run the different tools from [CLI](./Usage.md#working-from-a-local-repo-cli), or by [online usage](./Usage.md#online-usage).
<h3>Example results:</h3>
</div>
@ -89,8 +87,9 @@ See the [usage guide](./Usage.md) for instructions how to run the different tool
- [Overview](#overview)
- [Try it now](#try-it-now)
- [Installation](#installation)
- [Usage guide](./Usage.md)
- [How it works](#how-it-works)
- [Why use PR-Agent?](#why-use-pr-agent)
- [Why use PR-Agent](#why-use-pr-agent)
- [Roadmap](#roadmap)
</div>
@ -101,12 +100,11 @@ See the [usage guide](./Usage.md) for instructions how to run the different tool
|-------|---------------------------------------------|:------:|:------:|:---------:|:----------:|:----------:|:----------:|
| TOOLS | Review | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| | Ask | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| | Auto-Description | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| | Improve Code | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | | :white_check_mark: |
| | ⮑ Extended | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | | :white_check_mark: |
| | Reflect and Review | :white_check_mark: | :white_check_mark: | :white_check_mark: | | :white_check_mark: | :white_check_mark: |
| | Update CHANGELOG.md | :white_check_mark: | :white_check_mark: | :white_check_mark: | | | |
| | Find similar issue | :white_check_mark: | | | | | |
| | Auto-Description | :white_check_mark: | :white_check_mark: | | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| | Improve Code | :white_check_mark: | :white_check_mark: | | :white_check_mark: | | :white_check_mark: |
| | ⮑ Extended | :white_check_mark: | :white_check_mark: | | :white_check_mark: | | :white_check_mark: |
| | Reflect and Review | :white_check_mark: | | | | :white_check_mark: | :white_check_mark: |
| | Update CHANGELOG.md | :white_check_mark: | | | | | |
| | | | | | | |
| USAGE | CLI | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| | App / webhook | :white_check_mark: | :white_check_mark: | | | |
@ -184,7 +182,7 @@ Here are some advantages of PR-Agent:
- [x] Support additional models, as a replacement for OpenAI (see [here](https://github.com/Codium-ai/pr-agent/pull/172))
- [x] Develop additional logic for handling large PRs (see [here](https://github.com/Codium-ai/pr-agent/pull/229))
- [ ] Add additional context to the prompt. For example, repo (or relevant files) summarization, with tools such a [ctags](https://github.com/universal-ctags/ctags)
- [x] PR-Agent for issues
- [ ] PR-Agent for issues, and just for pull requests
- [ ] Adding more tools. Possible directions:
- [x] PR description
- [x] Inline code suggestions
@ -202,13 +200,3 @@ Here are some advantages of PR-Agent:
- [openai-pr-reviewer](https://github.com/coderabbitai/openai-pr-reviewer)
- [CodeReview BOT](https://github.com/anc95/ChatGPT-CodeReview)
- [AI-Maintainer](https://github.com/merwanehamadi/AI-Maintainer)
## Links
[![Join our Discord community](https://raw.githubusercontent.com/Codium-ai/codiumai-vscode-release/main/media/docs/Joincommunity.png)](https://discord.gg/kG35uSHDBc)
- Discord community: https://discord.gg/kG35uSHDBc
- CodiumAI site: https://codium.ai
- Blog: https://www.codium.ai/blog/
- Troubleshooting: https://www.codium.ai/blog/technical-faq-and-troubleshooting/
- Support: support@codium.ai

View File

@ -1,25 +0,0 @@
## [Version 0.7] - 2023-09-20
### Docker Tags
- codiumai/pr-agent:0.7
- codiumai/pr-agent:0.7-github_app
- codiumai/pr-agent:0.7-bitbucket-app
- codiumai/pr-agent:0.7-gitlab_webhook
- codiumai/pr-agent:0.7-github_polling
- codiumai/pr-agent:0.7-github_action
### Added::Algo
- New tool /similar_issue - Currently on GitHub app and CLI: indexes the issues in the repo, find the most similar issues to the target issue.
- Describe markers: Empower the /describe tool with a templating capability (see more details in https://github.com/Codium-ai/pr-agent/pull/273).
- New feature in the /review tool - added an estimated effort estimation to the review (https://github.com/Codium-ai/pr-agent/pull/306).
### Added::Infrastructure
- Implementation of a GitLab webhook.
- Implementation of a BitBucket app.
### Fixed
- Protection against no code suggestions generated.
- Resilience to repositories where the languages cannot be automatically detected.

106
Usage.md
View File

@ -50,12 +50,12 @@ When running from your local repo (CLI), your local configuration file will be u
Examples for invoking the different tools via the CLI:
- **Review**: `python cli.py --pr_url=<pr_url> review`
- **Describe**: `python cli.py --pr_url=<pr_url> describe`
- **Improve**: `python cli.py --pr_url=<pr_url> improve`
- **Ask**: `python cli.py --pr_url=<pr_url> ask "Write me a poem about this PR"`
- **Reflect**: `python cli.py --pr_url=<pr_url> reflect`
- **Update Changelog**: `python cli.py --pr_url=<pr_url> update_changelog`
- **Review**: `python cli.py --pr_url=<pr_url> /review`
- **Describe**: `python cli.py --pr_url=<pr_url> /describe`
- **Improve**: `python cli.py --pr_url=<pr_url> /improve`
- **Ask**: `python cli.py --pr_url=<pr_url> /ask "Write me a poem about this PR"`
- **Reflect**: `python cli.py --pr_url=<pr_url> /reflect`
- **Update Changelog**: `python cli.py --pr_url=<pr_url> /update_changelog`
`<pr_url>` is the url of the relevant PR (for example: https://github.com/Codium-ai/pr-agent/pull/50).
@ -149,83 +149,15 @@ TBD
#### Changing a model
See [here](pr_agent/algo/__init__.py) for the list of available models.
#### Azure
To use Azure, set:
```
api_key = "" # your azure api key
api_type = "azure"
api_version = '2023-05-15' # Check Azure documentation for the current API version
api_base = "" # The base URL for your Azure OpenAI resource. e.g. "https://<your resource name>.openai.azure.com"
deployment_id = "" # The deployment name you chose when you deployed the engine
```
in your .secrets.toml
and
To use Llama2 model, for example, set:
```
[config]
model="" # the OpenAI model you've deployed on Azure (e.g. gpt-3.5-turbo)
```
in the configuration.toml
#### Huggingface
**Local**
You can run Huggingface models locally through either [VLLM](https://docs.litellm.ai/docs/providers/vllm) or [Ollama](https://docs.litellm.ai/docs/providers/ollama)
E.g. to use a new Huggingface model locally via Ollama, set:
```
[__init__.py]
MAX_TOKENS = {
"model-name-on-ollama": <max_tokens>
}
e.g.
MAX_TOKENS={
...,
"llama2": 4096
}
[config] # in configuration.toml
model = "ollama/llama2"
[ollama] # in .secrets.toml
api_base = ... # the base url for your huggingface inference endpoint
```
**Inference Endpoints**
To use a new model with Huggingface Inference Endpoints, for example, set:
```
[__init__.py]
MAX_TOKENS = {
"model-name-on-huggingface": <max_tokens>
}
e.g.
MAX_TOKENS={
...,
"meta-llama/Llama-2-7b-chat-hf": 4096
}
[config] # in configuration.toml
model = "huggingface/meta-llama/Llama-2-7b-chat-hf"
[huggingface] # in .secrets.toml
key = ... # your huggingface api key
api_base = ... # the base url for your huggingface inference endpoint
```
(you can obtain a Llama2 key from [here](https://replicate.com/replicate/llama-2-70b-chat/api))
#### Replicate
To use Llama2 model with Replicate, for example, set:
```
[config] # in configuration.toml
model = "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"
[replicate] # in .secrets.toml
[replicate]
key = ...
```
(you can obtain a Llama2 key from [here](https://replicate.com/replicate/llama-2-70b-chat/api))
Also review the [AiHandler](pr_agent/algo/ai_handler.py) file for instruction how to set keys for other models.
#### Extra instructions
@ -248,25 +180,3 @@ And use the following settings (you have to replace the values) in .secrets.toml
org = "https://dev.azure.com/YOUR_ORGANIZATION/"
pat = "YOUR_PAT_TOKEN"
```
#### Similar issue tool
[Example usage](https://github.com/Alibaba-MIIL/ASL/issues/107)
<img src=./pics/similar_issue_tool.png width="768">
To enable usage of the '**similar issue**' tool, you need to set the following keys in `.secrets.toml` (or in the relevant environment variables):
```
[pinecone]
api_key = "..."
environment = "..."
```
These parameters can be obtained by registering to [Pinecone](https://app.pinecone.io/?sessionType=signup/).
- To invoke the 'similar issue' tool from **CLI**, run:
`python3 cli.py --issue_url=... similar_issue`
- To invoke the 'similar' issue tool via online usage, [comment](https://github.com/Codium-ai/pr-agent/issues/178#issuecomment-1716934893) on a PR:
`/similar_issue`
- You can also enable the 'similar issue' tool to run automatically when a new issue is opened, by adding it to the [pr_commands list in the github_app section](https://github.com/Codium-ai/pr-agent/blob/main/pr_agent/settings/configuration.toml#L66)

BIN
pics/debugger.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 534 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 210 KiB

View File

@ -9,7 +9,6 @@ from pr_agent.git_providers import get_git_provider
from pr_agent.tools.pr_code_suggestions import PRCodeSuggestions
from pr_agent.tools.pr_description import PRDescription
from pr_agent.tools.pr_information_from_user import PRInformationFromUser
from pr_agent.tools.pr_similar_issue import PRSimilarIssue
from pr_agent.tools.pr_questions import PRQuestions
from pr_agent.tools.pr_reviewer import PRReviewer
from pr_agent.tools.pr_update_changelog import PRUpdateChangelog
@ -31,7 +30,6 @@ command2class = {
"update_changelog": PRUpdateChangelog,
"config": PRConfig,
"settings": PRConfig,
"similar_issue": PRSimilarIssue,
}
commands = list(command2class.keys())

View File

@ -1,5 +1,4 @@
MAX_TOKENS = {
'text-embedding-ada-002': 8000,
'gpt-3.5-turbo': 4000,
'gpt-3.5-turbo-0613': 4000,
'gpt-3.5-turbo-0301': 4000,
@ -12,5 +11,4 @@ MAX_TOKENS = {
'claude-2': 100000,
'command-nightly': 4096,
'replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1': 4096,
'meta-llama/Llama-2-7b-chat-hf': 4096
}

View File

@ -1,12 +1,13 @@
import logging
import os
import litellm
import openai
from litellm import acompletion
from openai.error import APIError, RateLimitError, Timeout, TryAgain
from retry import retry
from pr_agent.config_loader import get_settings
OPENAI_RETRIES = 5
@ -25,11 +26,7 @@ class AiHandler:
try:
openai.api_key = get_settings().openai.key
litellm.openai_key = get_settings().openai.key
if get_settings().get("litellm.use_client"):
litellm_token = get_settings().get("litellm.LITELLM_TOKEN")
assert litellm_token, "LITELLM_TOKEN is required"
os.environ["LITELLM_TOKEN"] = litellm_token
litellm.use_client = True
litellm.debugger = get_settings().litellm.debugger
self.azure = False
if get_settings().get("OPENAI.ORG", None):
litellm.organization = get_settings().openai.org
@ -51,8 +48,8 @@ class AiHandler:
litellm.replicate_key = get_settings().replicate.key
if get_settings().get("HUGGINGFACE.KEY", None):
litellm.huggingface_key = get_settings().huggingface.key
if get_settings().get("HUGGINGFACE.API_BASE", None):
litellm.api_base = get_settings().huggingface.api_base
if get_settings().get("LITELLM.DEBUGGER") and get_settings().get("LITELLM.EMAIL"):
litellm.email = get_settings().get("LITELLM.EMAIL", None)
except AttributeError as e:
raise ValueError("OpenAI key is required") from e

View File

@ -42,11 +42,6 @@ def sort_files_by_main_languages(languages: Dict, files: list):
files_sorted = []
rest_files = {}
# if no languages detected, put all files in the "Other" category
if not languages:
files_sorted = [({"language": "Other", "files": list(files_filtered)})]
return files_sorted
main_extensions_flat = []
for ext in main_extensions:
main_extensions_flat.extend(ext)

View File

@ -21,7 +21,7 @@ class TokenHandler:
method.
"""
def __init__(self, pr=None, vars: dict = {}, system="", user=""):
def __init__(self, pr, vars: dict, system, user):
"""
Initializes the TokenHandler object.
@ -32,7 +32,6 @@ class TokenHandler:
- user: The user string.
"""
self.encoder = get_token_encoder()
if pr is not None:
self.prompt_tokens = self._get_system_user_tokens(pr, self.encoder, vars, system, user)
def _get_system_user_tokens(self, pr, encoder, vars: dict, system, user):

View File

@ -20,7 +20,7 @@ def get_setting(key: str) -> Any:
except Exception:
return global_settings.get(key, None)
def convert_to_markdown(output_data: dict, gfm_supported: bool=True) -> str:
def convert_to_markdown(output_data: dict) -> str:
"""
Convert a dictionary of data into markdown format.
Args:
@ -42,7 +42,6 @@ def convert_to_markdown(output_data: dict, gfm_supported: bool=True) -> str:
"General suggestions": "💡",
"Insights from user's answers": "📝",
"Code feedback": "🤖",
"Estimated effort to review [1-5]": "⏱️",
}
for key, value in output_data.items():
@ -50,14 +49,11 @@ def convert_to_markdown(output_data: dict, gfm_supported: bool=True) -> str:
continue
if isinstance(value, dict):
markdown_text += f"## {key}\n\n"
markdown_text += convert_to_markdown(value, gfm_supported)
markdown_text += convert_to_markdown(value)
elif isinstance(value, list):
emoji = emojis.get(key, "")
if key.lower() == 'code feedback':
if gfm_supported:
markdown_text += f"\n\n- **<details><summary> { emoji } Code feedback:**</summary>\n\n"
else:
markdown_text += f"\n\n- **{emoji} Code feedback:**\n\n"
else:
markdown_text += f"- {emoji} **{key}:**\n\n"
for item in value:
@ -66,10 +62,7 @@ def convert_to_markdown(output_data: dict, gfm_supported: bool=True) -> str:
elif item:
markdown_text += f" - {item}\n"
if key.lower() == 'code feedback':
if gfm_supported:
markdown_text += "</details>\n\n"
else:
markdown_text += "\n\n"
elif value != 'n/a':
emoji = emojis.get(key, "")
markdown_text += f"- {emoji} **{key}:** {value}\n"

View File

@ -17,7 +17,6 @@ For example:
- cli.py --pr_url=... improve
- cli.py --pr_url=... ask "write me a poem about this PR"
- cli.py --pr_url=... reflect
- cli.py --issue_url=... similar_issue
Supported commands:
-review / review_pr - Add a review that includes a summary of the PR and specific suggestions for improvement.
@ -38,21 +37,13 @@ Configuration:
To edit any configuration parameter from 'configuration.toml', just add -config_path=<value>.
For example: 'python cli.py --pr_url=... review --pr_reviewer.extra_instructions="focus on the file: ..."'
""")
parser.add_argument('--pr_url', type=str, help='The URL of the PR to review', default=None)
parser.add_argument('--issue_url', type=str, help='The URL of the Issue to review', default=None)
parser.add_argument('--pr_url', type=str, help='The URL of the PR to review', required=True)
parser.add_argument('command', type=str, help='The', choices=commands, default='review')
parser.add_argument('rest', nargs=argparse.REMAINDER, default=[])
args = parser.parse_args(inargs)
if not args.pr_url and not args.issue_url:
parser.print_help()
return
logging.basicConfig(level=os.environ.get("LOGLEVEL", "INFO"))
command = args.command.lower()
get_settings().set("CONFIG.CLI_MODE", True)
if args.issue_url:
result = asyncio.run(PRAgent().handle_request(args.issue_url, command + " " + " ".join(args.rest)))
else:
result = asyncio.run(PRAgent().handle_request(args.pr_url, command + " " + " ".join(args.rest)))
if not result:
parser.print_help()

View File

@ -38,8 +38,7 @@ class AzureDevopsProvider:
self.set_pr(pr_url)
def is_supported(self, capability: str) -> bool:
if capability in ['get_issue_comments', 'create_inline_comment', 'publish_inline_comments', 'get_labels',
'remove_initial_comment', 'gfm_markdown']:
if capability in ['get_issue_comments', 'create_inline_comment', 'publish_inline_comments', 'get_labels', 'remove_initial_comment']:
return False
return True

View File

@ -7,7 +7,6 @@ import requests
from atlassian.bitbucket import Cloud
from starlette_context import context
from ..algo.pr_processing import clip_tokens, find_line_number_of_relevant_line_in_file
from ..config_loader import get_settings
from .git_provider import FilePatchInfo, GitProvider
@ -36,8 +35,9 @@ class BitbucketProvider(GitProvider):
self.incremental = incremental
if pr_url:
self.set_pr(pr_url)
self.bitbucket_comment_api_url = self.pr._BitbucketBase__data["links"]["comments"]["href"]
self.bitbucket_pull_request_api_url = self.pr._BitbucketBase__data["links"]['self']['href']
self.bitbucket_comment_api_url = self.pr._BitbucketBase__data["links"][
"comments"
]["href"]
def get_repo_settings(self):
try:
@ -101,7 +101,12 @@ class BitbucketProvider(GitProvider):
return False
def is_supported(self, capability: str) -> bool:
if capability in ['get_issue_comments', 'publish_inline_comments', 'get_labels', 'gfm_markdown']:
if capability in [
"get_issue_comments",
"create_inline_comment",
"publish_inline_comments",
"get_labels",
]:
return False
return True
@ -146,30 +151,17 @@ class BitbucketProvider(GitProvider):
except Exception as e:
logging.exception(f"Failed to remove temp comments, error: {e}")
# funtion to create_inline_comment
def create_inline_comment(self, body: str, relevant_file: str, relevant_line_in_file: str):
position, absolute_position = find_line_number_of_relevant_line_in_file(self.get_diff_files(), relevant_file.strip('`'), relevant_line_in_file)
if position == -1:
if get_settings().config.verbosity_level >= 2:
logging.info(f"Could not find position for {relevant_file} {relevant_line_in_file}")
subject_type = "FILE"
else:
subject_type = "LINE"
path = relevant_file.strip()
return dict(body=body, path=path, position=absolute_position) if subject_type == "LINE" else {}
def publish_inline_comment(self, comment: str, from_line: int, file: str):
payload = json.dumps( {
def publish_inline_comment(
self, comment: str, from_line: int, to_line: int, file: str
):
payload = json.dumps(
{
"content": {
"raw": comment,
},
"inline": {
"to": from_line,
"path": file
},
})
"inline": {"to": from_line, "path": file},
}
)
response = requests.request(
"POST", self.bitbucket_comment_api_url, data=payload, headers=self.headers
)
@ -177,7 +169,9 @@ class BitbucketProvider(GitProvider):
def publish_inline_comments(self, comments: list[dict]):
for comment in comments:
self.publish_inline_comment(comment['body'], comment['start_line'], comment['path'])
self.publish_inline_comment(
comment["body"], comment["start_line"], comment["line"], comment["path"]
)
def get_title(self):
return self.pr.title
@ -245,21 +239,15 @@ class BitbucketProvider(GitProvider):
def get_commit_messages(self):
return "" # not implemented yet
# bitbucket does not support labels
def publish_description(self, pr_title: str, description: str):
payload = json.dumps({
"description": description,
"title": pr_title
})
response = requests.request("PUT", self.bitbucket_pull_request_api_url, headers=self.headers, data=payload)
return response
# bitbucket does not support labels
def publish_labels(self, pr_types: list):
def publish_description(self, pr_title: str, pr_body: str):
pass
def create_inline_comment(
self, body: str, relevant_file: str, relevant_line_in_file: str
):
pass
def publish_labels(self, labels):
pass
# bitbucket does not support labels
def get_labels(self):
pass

View File

@ -54,16 +54,11 @@ class CodeCommitClient:
def __init__(self):
self.boto_client = None
def is_supported(self, capability: str) -> bool:
if capability in ["gfm_markdown"]:
return False
return True
def _connect_boto_client(self):
try:
self.boto_client = boto3.client("codecommit")
except Exception as e:
raise ValueError(f"Failed to connect to AWS CodeCommit: {e}") from e
raise ValueError(f"Failed to connect to AWS CodeCommit: {e}")
def get_differences(self, repo_name: int, destination_commit: str, source_commit: str):
"""

View File

@ -74,7 +74,6 @@ class CodeCommitProvider(GitProvider):
"create_inline_comment",
"publish_inline_comments",
"get_labels",
"gfm_markdown"
]:
return False
return True

View File

@ -115,14 +115,7 @@ def adopt_to_gerrit_message(message):
lines = message.splitlines()
buf = []
for line in lines:
# remove markdown formatting
line = (line.replace("*", "")
.replace("``", "`")
.replace("<details>", "")
.replace("</details>", "")
.replace("<summary>", "")
.replace("</summary>", ""))
line = line.replace("*", "").replace("``", "`")
line = line.strip()
if line.startswith('#'):
buf.append("\n" +
@ -226,12 +219,10 @@ class GerritProvider(GitProvider):
return [self.repo.head.commit.message]
def get_repo_settings(self):
try:
with open(self.repo_path / ".pr_agent.toml", 'rb') as f:
contents = f.read()
return contents
except OSError:
return b""
"""
TODO: Implement support of .pr_agent.toml
"""
return ""
def get_diff_files(self) -> list[FilePatchInfo]:
diffs = self.repo.head.commit.diff(
@ -313,8 +304,7 @@ class GerritProvider(GitProvider):
# 'get_issue_comments',
'create_inline_comment',
'publish_inline_comments',
'get_labels',
'gfm_markdown'
'get_labels'
]:
return False
return True

View File

@ -132,10 +132,6 @@ def get_main_pr_language(languages, files) -> str:
Get the main language of the commit. Return an empty string if cannot determine.
"""
main_language_str = ""
if not languages:
logging.info("No languages detected")
return main_language_str
try:
top_language = max(languages, key=languages.get).lower()

View File

@ -32,7 +32,7 @@ class GithubProvider(GitProvider):
self.diff_files = None
self.git_files = None
self.incremental = incremental
if pr_url and 'pull' in pr_url:
if pr_url:
self.set_pr(pr_url)
self.last_commit_id = list(self.pr.get_commits())[-1]
@ -309,35 +309,6 @@ class GithubProvider(GitProvider):
return repo_name, pr_number
@staticmethod
def _parse_issue_url(issue_url: str) -> Tuple[str, int]:
parsed_url = urlparse(issue_url)
if 'github.com' not in parsed_url.netloc:
raise ValueError("The provided URL is not a valid GitHub URL")
path_parts = parsed_url.path.strip('/').split('/')
if 'api.github.com' in parsed_url.netloc:
if len(path_parts) < 5 or path_parts[3] != 'issues':
raise ValueError("The provided URL does not appear to be a GitHub ISSUE URL")
repo_name = '/'.join(path_parts[1:3])
try:
issue_number = int(path_parts[4])
except ValueError as e:
raise ValueError("Unable to convert issue number to integer") from e
return repo_name, issue_number
if len(path_parts) < 4 or path_parts[2] != 'issues':
raise ValueError("The provided URL does not appear to be a GitHub PR issue")
repo_name = '/'.join(path_parts[:2])
try:
issue_number = int(path_parts[3])
except ValueError as e:
raise ValueError("Unable to convert issue number to integer") from e
return repo_name, issue_number
def _get_github_client(self):
deployment_type = get_settings().get("GITHUB.DEPLOYMENT_TYPE", "user")

View File

@ -43,7 +43,7 @@ class GitLabProvider(GitProvider):
self.incremental = incremental
def is_supported(self, capability: str) -> bool:
if capability in ['get_issue_comments', 'create_inline_comment', 'publish_inline_comments', 'gfm_markdown']:
if capability in ['get_issue_comments', 'create_inline_comment', 'publish_inline_comments']:
return False
return True

View File

@ -56,8 +56,7 @@ class LocalGitProvider(GitProvider):
raise KeyError(f'Branch: {self.target_branch_name} does not exist')
def is_supported(self, capability: str) -> bool:
if capability in ['get_issue_comments', 'create_inline_comment', 'publish_inline_comments', 'get_labels',
'gfm_markdown']:
if capability in ['get_issue_comments', 'create_inline_comment', 'publish_inline_comments', 'get_labels']:
return False
return True

View File

@ -12,8 +12,8 @@ async def run_action():
# Get environment variables
GITHUB_EVENT_NAME = os.environ.get('GITHUB_EVENT_NAME')
GITHUB_EVENT_PATH = os.environ.get('GITHUB_EVENT_PATH')
OPENAI_KEY = os.environ.get('OPENAI_KEY') or os.environ.get('OPENAI.KEY')
OPENAI_ORG = os.environ.get('OPENAI_ORG') or os.environ.get('OPENAI.ORG')
OPENAI_KEY = os.environ.get('OPENAI_KEY')
OPENAI_ORG = os.environ.get('OPENAI_ORG')
GITHUB_TOKEN = os.environ.get('GITHUB_TOKEN')
get_settings().set("CONFIG.PUBLISH_OUTPUT_PROGRESS", False)
@ -61,21 +61,12 @@ async def run_action():
if action in ["created", "edited"]:
comment_body = event_payload.get("comment", {}).get("body")
if comment_body:
is_pr = False
# check if issue is pull request
if event_payload.get("issue", {}).get("pull_request"):
url = event_payload.get("issue", {}).get("pull_request", {}).get("url")
is_pr = True
else:
url = event_payload.get("issue", {}).get("url")
if url:
pr_url = event_payload.get("issue", {}).get("pull_request", {}).get("url")
if pr_url:
body = comment_body.strip().lower()
comment_id = event_payload.get("comment", {}).get("id")
provider = get_git_provider()(pr_url=url)
if is_pr:
await PRAgent().handle_request(url, body, notify=lambda: provider.add_eyes_reaction(comment_id))
else:
await PRAgent().handle_request(url, body)
provider = get_git_provider()(pr_url=pr_url)
await PRAgent().handle_request(pr_url, body, notify=lambda: provider.add_eyes_reaction(comment_id))
if __name__ == '__main__':

View File

@ -16,10 +16,6 @@ key = "" # Acquire through https://platform.openai.com
#deployment_id = "" # The deployment name you chose when you deployed the engine
#fallback_deployments = [] # For each fallback model specified in configuration.toml in the [config] section, specify the appropriate deployment_id
[pinecone]
api_key = "..."
environment = "gcp-starter"
[anthropic]
key = "" # Optional, uncomment if you want to use Anthropic. Acquire through https://www.anthropic.com/
@ -28,14 +24,6 @@ key = "" # Optional, uncomment if you want to use Cohere. Acquire through https:
[replicate]
key = "" # Optional, uncomment if you want to use Replicate. Acquire through https://replicate.com/
[huggingface]
key = "" # Optional, uncomment if you want to use Huggingface Inference API. Acquire through https://huggingface.co/docs/api-inference/quicktour
api_base = "" # the base url for your huggingface inference endpoint
[ollama]
api_base = "" # the base url for your huggingface inference endpoint
[github]
# ---- Set the following only for deployment type == "user"
user_token = "" # A GitHub personal access token with 'repo' scope.
@ -55,12 +43,5 @@ webhook_secret = "<WEBHOOK SECRET>" # Optional, may be commented out.
personal_access_token = ""
[bitbucket]
# For Bitbucket personal/repository bearer token
# Bitbucket personal bearer token
bearer_token = ""
# For Bitbucket app
app_key = ""
base_url = ""
[litellm]
LITELLM_TOKEN = "" # see https://docs.litellm.ai/docs/debugging/hosted_debugging for details and instructions on how to get a token

View File

@ -11,14 +11,12 @@ ai_timeout=180
max_description_tokens = 500
max_commits_tokens = 500
secret_provider="google_cloud_storage"
cli_mode=false
[pr_reviewer] # /review #
require_focused_review=false
require_score_review=false
require_tests_review=true
require_security_review=true
require_estimate_effort_to_review=true
num_code_suggestions=4
inline_code_comments = false
ask_and_reflect=false
@ -26,14 +24,10 @@ automatic_review=true
extra_instructions = ""
[pr_description] # /describe #
publish_labels=true
publish_description_as_comment=false
add_original_user_description=false
keep_original_user_title=false
extra_instructions = ""
# markers
use_description_markers=false
include_generated_by_header=true
[pr_questions] # /ask #
@ -102,14 +96,5 @@ polling_interval_seconds = 30
# patch_server_token = ""
[litellm]
#use_client = false
[pr_similar_issue]
skip_comments = false
force_update_dataset = false
max_issues_to_scan = 500
[pinecone]
# fill and place in .secrets.toml
#api_key = ...
# environment = "gcp-starter"
debugger=false
#email="youremail@example.com"

View File

@ -85,14 +85,6 @@ PR Analysis:
code diff changes are too scattered, then the PR is not focused. Explain
your answer shortly.
{%- endif %}
{%- if require_estimate_effort_to_review %}
Estimated effort to review [1-5]:
type: string
description: >-
Estimate, on a scale of 1-5 (inclusive), the time and effort required to review this PR by an experienced and knowledgeable developer. 1 means short and easy review , 5 means long and hard review.
Take into account the size, complexity, quality, and the needed changes of the PR code diff.
Explain your answer shortly (1-2 sentences).
{%- endif %}
PR Feedback:
General suggestions:
type: string

View File

@ -48,7 +48,6 @@ class PRCodeSuggestions:
get_settings().pr_code_suggestions_prompt.user)
async def run(self):
try:
logging.info('Generating code suggestions for PR...')
if get_settings().config.publish_output:
self.git_provider.publish_comment("Preparing review...", is_temporary=True)
@ -59,9 +58,6 @@ class PRCodeSuggestions:
data = self._prepare_pr_code_suggestions()
else:
data = await retry_with_fallback_models(self._prepare_prediction_extended)
if (not data) or (not 'Code suggestions' in data):
logging.info('No code suggestions found for PR.')
return
if (not self.is_extended and get_settings().pr_code_suggestions.rank_suggestions) or \
(self.is_extended and get_settings().pr_code_suggestions.rank_extended_suggestions):
@ -73,8 +69,6 @@ class PRCodeSuggestions:
self.git_provider.remove_initial_comment()
logging.info('Pushing inline code suggestions...')
self.push_inline_code_suggestions(data)
except Exception as e:
logging.error(f"Failed to generate code suggestions for PR, error: {e}")
async def _prepare_prediction(self, model: str):
logging.info('Getting PR diff...')

View File

@ -1,6 +1,5 @@
import copy
import json
import re
import logging
from typing import List, Tuple
@ -29,7 +28,6 @@ class PRDescription:
self.main_pr_language = get_main_pr_language(
self.git_provider.get_languages(), self.git_provider.get_files()
)
self.pr_id = f"{self.git_provider.repo}/{self.git_provider.pr_num}"
# Initialize the AI handler
self.ai_handler = AiHandler()
@ -63,44 +61,27 @@ class PRDescription:
"""
Generates a PR description using an AI model and publishes it to the PR.
"""
try:
logging.info(f"Generating a PR description {self.pr_id}")
logging.info('Generating a PR description...')
if get_settings().config.publish_output:
self.git_provider.publish_comment("Preparing pr description...", is_temporary=True)
await retry_with_fallback_models(self._prepare_prediction)
logging.info(f"Preparing answer {self.pr_id}")
if self.prediction:
self._prepare_data()
else:
return None
pr_labels = []
if get_settings().pr_description.publish_labels:
pr_labels = self._prepare_labels()
if get_settings().pr_description.use_description_markers:
pr_title, pr_body = self._prepare_pr_answer_with_markers()
else:
pr_title, pr_body, = self._prepare_pr_answer()
full_markdown_description = f"## Title\n\n{pr_title}\n\n___\n{pr_body}"
logging.info('Preparing answer...')
pr_title, pr_body, pr_types, markdown_text = self._prepare_pr_answer()
if get_settings().config.publish_output:
logging.info(f"Pushing answer {self.pr_id}")
logging.info('Pushing answer...')
if get_settings().pr_description.publish_description_as_comment:
self.git_provider.publish_comment(full_markdown_description)
self.git_provider.publish_comment(markdown_text)
else:
self.git_provider.publish_description(pr_title, pr_body)
if get_settings().pr_description.publish_labels and self.git_provider.is_supported("get_labels"):
if self.git_provider.is_supported("get_labels"):
current_labels = self.git_provider.get_labels()
if current_labels is None:
current_labels = []
self.git_provider.publish_labels(pr_labels + current_labels)
self.git_provider.publish_labels(pr_types + current_labels)
self.git_provider.remove_initial_comment()
except Exception as e:
logging.error(f"Error generating PR description {self.pr_id}: {e}")
return ""
@ -118,12 +99,9 @@ class PRDescription:
Any exceptions raised by the 'get_pr_diff' and '_get_prediction' functions.
"""
if get_settings().pr_description.use_description_markers and 'pr_agent:' not in self.user_description:
return None
logging.info(f"Getting PR diff {self.pr_id}")
logging.info('Getting PR diff...')
self.patches_diff = get_pr_diff(self.git_provider, self.token_handler, model)
logging.info(f"Getting AI prediction {self.pr_id}")
logging.info('Getting AI prediction...')
self.prediction = await self._get_prediction(model)
async def _get_prediction(self, model: str) -> str:
@ -156,71 +134,34 @@ class PRDescription:
return response
def _prepare_data(self):
# Load the AI prediction data into a dictionary
self.data = load_yaml(self.prediction.strip())
if get_settings().pr_description.add_original_user_description and self.user_description:
self.data["User Description"] = self.user_description
def _prepare_labels(self) -> List[str]:
pr_types = []
# If the 'PR Type' key is present in the dictionary, split its value by comma and assign it to 'pr_types'
if 'PR Type' in self.data:
if type(self.data['PR Type']) == list:
pr_types = self.data['PR Type']
elif type(self.data['PR Type']) == str:
pr_types = self.data['PR Type'].split(',')
return pr_types
def _prepare_pr_answer_with_markers(self) -> Tuple[str, str]:
logging.info(f"Using description marker replacements {self.pr_id}")
title = self.vars["title"]
body = self.user_description
if get_settings().pr_description.include_generated_by_header:
ai_header = f"### 🤖 Generated by PR Agent at {self.git_provider.last_commit_id.sha}\n\n"
else:
ai_header = ""
ai_summary = self.data.get('PR Description')
if ai_summary and not re.search(r'<!--\s*pr_agent:summary\s*-->', body):
summary = f"{ai_header}{ai_summary}"
body = body.replace('pr_agent:summary', summary)
if not re.search(r'<!--\s*pr_agent:walkthrough\s*-->', body):
ai_walkthrough = self.data.get('PR Main Files Walkthrough')
if ai_walkthrough:
walkthrough = str(ai_header)
for file in ai_walkthrough:
filename = file['filename'].replace("'", "`")
description = file['changes in file'].replace("'", "`")
walkthrough += f'- `{filename}`: {description}\n'
body = body.replace('pr_agent:walkthrough', walkthrough)
return title, body
def _prepare_pr_answer(self) -> Tuple[str, str]:
def _prepare_pr_answer(self) -> Tuple[str, str, List[str], str]:
"""
Prepare the PR description based on the AI prediction data.
Returns:
- title: a string containing the PR title.
- pr_body: a string containing the PR description body in a markdown format.
- pr_body: a string containing the PR body in a markdown format.
- pr_types: a list of strings containing the PR types.
- markdown_text: a string containing the AI prediction data in a markdown format. used for publishing a comment
"""
# Load the AI prediction data into a dictionary
data = load_yaml(self.prediction.strip())
# Iterate over the dictionary items and append the key and value to 'markdown_text' in a markdown format
markdown_text = ""
for key, value in self.data.items():
markdown_text += f"## {key}\n\n"
markdown_text += f"{value}\n\n"
if get_settings().pr_description.add_original_user_description and self.user_description:
data["User Description"] = self.user_description
# Initialization
pr_types = []
# If the 'PR Type' key is present in the dictionary, split its value by comma and assign it to 'pr_types'
if 'PR Type' in data:
if type(data['PR Type']) == list:
pr_types = data['PR Type']
elif type(data['PR Type']) == str:
pr_types = data['PR Type'].split(',')
# Remove the 'PR Title' key from the dictionary
ai_title = self.data.pop('PR Title', self.vars["title"])
ai_title = data.pop('PR Title')
if get_settings().pr_description.keep_original_user_title:
# Assign the original PR title to the 'title' variable
title = self.vars["title"]
@ -231,27 +172,25 @@ class PRDescription:
# Iterate over the remaining dictionary items and append the key and value to 'pr_body' in a markdown format,
# except for the items containing the word 'walkthrough'
pr_body = ""
for idx, (key, value) in enumerate(self.data.items()):
for idx, (key, value) in enumerate(data.items()):
pr_body += f"## {key}:\n"
if 'walkthrough' in key.lower():
# for filename, description in value.items():
if self.git_provider.is_supported("gfm_markdown"):
pr_body += "<details> <summary>files:</summary>\n\n"
for file in value:
filename = file['filename'].replace("'", "`")
description = file['changes in file']
pr_body += f'`{filename}`: {description}\n'
if self.git_provider.is_supported("gfm_markdown"):
pr_body +="</details>\n"
else:
# if the value is a list, join its items by comma
if type(value) == list:
value = ', '.join(v for v in value)
pr_body += f"{value}\n"
if idx < len(self.data) - 1:
if idx < len(data) - 1:
pr_body += "\n___\n"
markdown_text = f"## Title\n\n{title}\n\n___\n{pr_body}"
if get_settings().config.verbosity_level >= 2:
logging.info(f"title:\n{title}\n{pr_body}")
return title, pr_body
return title, pr_body, pr_types, markdown_text

View File

@ -59,7 +59,6 @@ class PRReviewer:
"require_tests": get_settings().pr_reviewer.require_tests_review,
"require_security": get_settings().pr_reviewer.require_security_review,
"require_focused": get_settings().pr_reviewer.require_focused_review,
"require_estimate_effort_to_review": get_settings().pr_reviewer.require_estimate_effort_to_review,
'num_code_suggestions': get_settings().pr_reviewer.num_code_suggestions,
'question_str': question_str,
'answer_str': answer_str,
@ -95,8 +94,6 @@ class PRReviewer:
"""
Review the pull request and generate feedback.
"""
try:
if self.is_auto and not get_settings().pr_reviewer.automatic_review:
logging.info(f'Automatic review is disabled {self.pr_url}')
return None
@ -119,8 +116,6 @@ class PRReviewer:
if get_settings().pr_reviewer.inline_code_comments:
logging.info('Pushing inline code comments...')
self._publish_inline_code_comments()
except Exception as e:
logging.error(f"Failed to review PR: {e}")
async def _prepare_prediction(self, model: str) -> None:
"""
@ -219,7 +214,7 @@ class PRReviewer:
"⏮️ Review for commits since previous PR-Agent review": f"Starting from commit {last_commit_url}"}})
data.move_to_end('Incremental PR Review', last=False)
markdown_text = convert_to_markdown(data, self.git_provider.is_supported("gfm_markdown"))
markdown_text = convert_to_markdown(data)
user = self.git_provider.get_user_id()
# Add help text if not in CLI mode

View File

@ -1,276 +0,0 @@
import copy
import json
import logging
from enum import Enum
from typing import List, Tuple
import pinecone
import openai
import pandas as pd
from pydantic import BaseModel, Field
from pr_agent.algo import MAX_TOKENS
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import get_git_provider
from pinecone_datasets import Dataset, DatasetMetadata
MODEL = "text-embedding-ada-002"
class PRSimilarIssue:
def __init__(self, issue_url: str, args: list = None):
if get_settings().config.git_provider != "github":
raise Exception("Only github is supported for similar issue tool")
self.cli_mode = get_settings().CONFIG.CLI_MODE
self.max_issues_to_scan = get_settings().pr_similar_issue.max_issues_to_scan
self.issue_url = issue_url
self.git_provider = get_git_provider()()
repo_name, issue_number = self.git_provider._parse_issue_url(issue_url.split('=')[-1])
self.git_provider.repo = repo_name
self.git_provider.repo_obj = self.git_provider.github_client.get_repo(repo_name)
self.token_handler = TokenHandler()
repo_obj = self.git_provider.repo_obj
repo_name_for_index = self.repo_name_for_index = repo_obj.full_name.lower().replace('/', '-').replace('_/', '-')
index_name = self.index_name = "codium-ai-pr-agent-issues"
# assuming pinecone api key and environment are set in secrets file
try:
api_key = get_settings().pinecone.api_key
environment = get_settings().pinecone.environment
except Exception:
if not self.cli_mode:
repo_name, original_issue_number = self.git_provider._parse_issue_url(self.issue_url.split('=')[-1])
issue_main = self.git_provider.repo_obj.get_issue(original_issue_number)
issue_main.create_comment("Please set pinecone api key and environment in secrets file")
raise Exception("Please set pinecone api key and environment in secrets file")
# check if index exists, and if repo is already indexed
run_from_scratch = False
upsert = True
pinecone.init(api_key=api_key, environment=environment)
if not index_name in pinecone.list_indexes():
run_from_scratch = True
upsert = False
else:
if get_settings().pr_similar_issue.force_update_dataset:
upsert = True
else:
pinecone_index = pinecone.Index(index_name=index_name)
res = pinecone_index.fetch([f"example_issue_{repo_name_for_index}"]).to_dict()
if res["vectors"]:
upsert = False
if run_from_scratch or upsert: # index the entire repo
logging.info('Indexing the entire repo...')
logging.info('Getting issues...')
issues = list(repo_obj.get_issues(state='all'))
logging.info('Done')
self._update_index_with_issues(issues, repo_name_for_index, upsert=upsert)
else: # update index if needed
pinecone_index = pinecone.Index(index_name=index_name)
issues_to_update = []
issues_paginated_list = repo_obj.get_issues(state='all')
counter = 1
for issue in issues_paginated_list:
if issue.pull_request:
continue
issue_str, comments, number = self._process_issue(issue)
issue_key = f"issue_{number}"
id = issue_key + "." + "issue"
res = pinecone_index.fetch([id]).to_dict()
is_new_issue = True
for vector in res["vectors"].values():
if vector['metadata']['repo'] == repo_name_for_index:
is_new_issue = False
break
if is_new_issue:
counter += 1
issues_to_update.append(issue)
else:
break
if issues_to_update:
logging.info(f'Updating index with {counter} new issues...')
self._update_index_with_issues(issues_to_update, repo_name_for_index, upsert=True)
else:
logging.info('No new issues to update')
async def run(self):
logging.info('Getting issue...')
repo_name, original_issue_number = self.git_provider._parse_issue_url(self.issue_url.split('=')[-1])
issue_main = self.git_provider.repo_obj.get_issue(original_issue_number)
issue_str, comments, number = self._process_issue(issue_main)
openai.api_key = get_settings().openai.key
logging.info('Done')
logging.info('Querying...')
res = openai.Embedding.create(input=[issue_str], engine=MODEL)
embeds = [record['embedding'] for record in res['data']]
pinecone_index = pinecone.Index(index_name=self.index_name)
res = pinecone_index.query(embeds[0],
top_k=5,
filter={"repo": self.repo_name_for_index},
include_metadata=True).to_dict()
relevant_issues_number_list = []
relevant_comment_number_list = []
score_list = []
for r in res['matches']:
issue_number = int(r["id"].split('.')[0].split('_')[-1])
if original_issue_number == issue_number:
continue
if issue_number not in relevant_issues_number_list:
relevant_issues_number_list.append(issue_number)
if 'comment' in r["id"]:
relevant_comment_number_list.append(int(r["id"].split('.')[1].split('_')[-1]))
else:
relevant_comment_number_list.append(-1)
score_list.append(str("{:.2f}".format(r['score'])))
logging.info('Done')
logging.info('Publishing response...')
similar_issues_str = "### Similar Issues\n___\n\n"
for i, issue_number_similar in enumerate(relevant_issues_number_list):
issue = self.git_provider.repo_obj.get_issue(issue_number_similar)
title = issue.title
url = issue.html_url
if relevant_comment_number_list[i] != -1:
url = list(issue.get_comments())[relevant_comment_number_list[i]].html_url
similar_issues_str += f"{i + 1}. **[{title}]({url})** (score={score_list[i]})\n\n"
if get_settings().config.publish_output:
response = issue_main.create_comment(similar_issues_str)
logging.info(similar_issues_str)
logging.info('Done')
def _process_issue(self, issue):
header = issue.title
body = issue.body
number = issue.number
if get_settings().pr_similar_issue.skip_comments:
comments = []
else:
comments = list(issue.get_comments())
issue_str = f"Issue Header: \"{header}\"\n\nIssue Body:\n{body}"
return issue_str, comments, number
def _update_index_with_issues(self, issues_list, repo_name_for_index, upsert=False):
logging.info('Processing issues...')
corpus = Corpus()
example_issue_record = Record(
id=f"example_issue_{repo_name_for_index}",
text="example_issue",
metadata=Metadata(repo=repo_name_for_index)
)
corpus.append(example_issue_record)
counter = 0
for issue in issues_list:
if issue.pull_request:
continue
counter += 1
if counter % 100 == 0:
logging.info(f"Scanned {counter} issues")
if counter >= self.max_issues_to_scan:
logging.info(f"Scanned {self.max_issues_to_scan} issues, stopping")
break
issue_str, comments, number = self._process_issue(issue)
issue_key = f"issue_{number}"
username = issue.user.login
created_at = str(issue.created_at)
if len(issue_str) < 8000 or \
self.token_handler.count_tokens(issue_str) < MAX_TOKENS[MODEL]: # fast reject first
issue_record = Record(
id=issue_key + "." + "issue",
text=issue_str,
metadata=Metadata(repo=repo_name_for_index,
username=username,
created_at=created_at,
level=IssueLevel.ISSUE)
)
corpus.append(issue_record)
if comments:
for j, comment in enumerate(comments):
comment_body = comment.body
num_words_comment = len(comment_body.split())
if num_words_comment < 10 or not isinstance(comment_body, str):
continue
if len(comment_body) < 8000 or \
self.token_handler.count_tokens(comment_body) < MAX_TOKENS[MODEL]:
comment_record = Record(
id=issue_key + ".comment_" + str(j + 1),
text=comment_body,
metadata=Metadata(repo=repo_name_for_index,
username=username, # use issue username for all comments
created_at=created_at,
level=IssueLevel.COMMENT)
)
corpus.append(comment_record)
df = pd.DataFrame(corpus.dict()["documents"])
logging.info('Done')
logging.info('Embedding...')
openai.api_key = get_settings().openai.key
list_to_encode = list(df["text"].values)
try:
res = openai.Embedding.create(input=list_to_encode, engine=MODEL)
embeds = [record['embedding'] for record in res['data']]
except:
embeds = []
logging.error('Failed to embed entire list, embedding one by one...')
for i, text in enumerate(list_to_encode):
try:
res = openai.Embedding.create(input=[text], engine=MODEL)
embeds.append(res['data'][0]['embedding'])
except:
embeds.append([0] * 1536)
df["values"] = embeds
meta = DatasetMetadata.empty()
meta.dense_model.dimension = len(embeds[0])
ds = Dataset.from_pandas(df, meta)
logging.info('Done')
api_key = get_settings().pinecone.api_key
environment = get_settings().pinecone.environment
if not upsert:
logging.info('Creating index from scratch...')
ds.to_pinecone_index(self.index_name, api_key=api_key, environment=environment)
else:
logging.info('Upserting index...')
namespace = ""
batch_size: int = 100
concurrency: int = 10
pinecone.init(api_key=api_key, environment=environment)
ds._upsert_to_index(self.index_name, namespace, batch_size, concurrency)
logging.info('Done')
class IssueLevel(str, Enum):
ISSUE = "issue"
COMMENT = "comment"
class Metadata(BaseModel):
repo: str
username: str = Field(default="@codium")
created_at: str = Field(default="01-01-1970 00:00:00.00000")
level: IssueLevel = Field(default=IssueLevel.ISSUE)
class Config:
use_enum_values = True
class Record(BaseModel):
id: str
text: str
metadata: Metadata
class Corpus(BaseModel):
documents: List[Record] = Field(default=[])
def append(self, r: Record):
self.documents.append(r)

View File

@ -46,7 +46,7 @@ class PRUpdateChangelog:
get_settings().pr_update_changelog_prompt.user)
async def run(self):
# assert type(self.git_provider) == GithubProvider, "Currently only Github is supported"
assert type(self.git_provider) == GithubProvider, "Currently only Github is supported"
logging.info('Updating the changelog...')
if get_settings().config.publish_output:

View File

@ -7,17 +7,15 @@ Jinja2==3.1.2
tiktoken==0.4.0
uvicorn==0.22.0
python-gitlab==3.15.0
pytest==7.4.0
aiohttp==3.8.4
pytest~=7.4.0
aiohttp~=3.8.4
atlassian-python-api==3.39.0
GitPython==3.1.32
GitPython~=3.1.32
PyYAML==6.0
starlette-context==0.3.6
litellm~=0.1.574
boto3==1.28.25
litellm~=0.1.504
boto3~=1.28.25
google-cloud-storage==2.10.0
ujson==5.8.0
azure-devops==7.1.0b3
msrest==0.7.1
pinecone-client
pinecone-datasets @ git+https://github.com/mrT23/pinecone-datasets.git@main

View File

@ -61,7 +61,7 @@ class TestSortFilesByMainLanguages:
type('', (object,), {'filename': 'file1.py'})(),
type('', (object,), {'filename': 'file2.java'})()
]
expected_output = [{'language': 'Other', 'files': files}]
expected_output = [{'language': 'Other', 'files': []}]
assert sort_files_by_main_languages(languages, files) == expected_output
# Tests that function handles empty files list