Compare commits

..

1 Commits

Author SHA1 Message Date
Tal
b9e3e5603b Update setup.py 2024-10-27 17:03:34 +02:00
20 changed files with 125 additions and 237 deletions

View File

@ -43,13 +43,6 @@ Qode Merge PR-Agent aims to help efficiently review and handle pull requests, by
## News and Updates
### November 3, 2024
Meaningful improvement to the quality of code suggestions by separating the code suggestion generation from [line number detection](https://github.com/Codium-ai/pr-agent/pull/1338)
<kbd>![image](https://github.com/user-attachments/assets/093c185c-31ca-47a1-a4fe-be7d9335ea66)</kbd>
### October 27, 2024
Qodo Merge PR Agent will now automatically document accepted code suggestions in a dedicated wiki page (`.pr_agent_accepted_suggestions`), enabling users to track historical changes, assess the tool's effectiveness, and learn from previously implemented recommendations in the repository.

View File

@ -46,5 +46,6 @@ This results in a more refined and valuable set of suggestions for the user, sav
## Appendix - Relevant Configuration Options
```
[pr_code_suggestions]
self_reflect_on_suggestions = true # Enable self-reflection on code suggestions
suggestions_score_threshold = 0 # Filter out suggestions with a score below this threshold (0-10)
```

View File

@ -3,7 +3,7 @@
You can use the Bitbucket Pipeline system to run Qodo Merge on every pull request open or update.
1. Add the following file in your repository bitbucket-pipelines.yml
1. Add the following file in your repository bitbucket_pipelines.yml
```yaml
pipelines:

View File

@ -42,36 +42,21 @@ Note that if your base branches are not protected, don't set the variables as `p
## Run a GitLab webhook server
1. From the GitLab workspace or group, create an access token with "Reporter" role ("Developer" if using Pro version of the agent) and "api" scope.
1. From the GitLab workspace or group, create an access token. Enable the "api" scope only.
2. Generate a random secret for your app, and save it for later. For example, you can use:
```
WEBHOOK_SECRET=$(python -c "import secrets; print(secrets.token_hex(10))")
```
3. Follow the instructions to build the Docker image, setup a secrets file and deploy on your own server from [here](https://qodo-merge-docs.qodo.ai/installation/github/#run-as-a-github-app) steps 4-7.
3. Clone this repository:
4. In the secrets file, fill in the following:
- Your OpenAI key.
- In the [gitlab] section, fill in personal_access_token and shared_secret. The access token can be a personal access token, or a group or project access token.
- Set deployment_type to 'gitlab' in [configuration.toml](https://github.com/Codium-ai/pr-agent/blob/main/pr_agent/settings/configuration.toml)
```
git clone https://github.com/Codium-ai/pr-agent.git
```
5. Create a webhook in GitLab. Set the URL to ```http[s]://<PR_AGENT_HOSTNAME>/webhook```. Set the secret token to the generated secret from step 2.
In the "Trigger" section, check the comments and merge request events boxes.
4. Prepare variables and secrets. Skip this step if you plan on settings these as environment variables when running the agent:
1. In the configuration file/variables:
- Set `deployment_type` to "gitlab"
2. In the secrets file/variables:
- Set your AI model key in the respective section
- In the [gitlab] section, set `personal_access_token` (with token from step 1) and `shared_secret` (with secret from step 2)
5. Build a Docker image for the app and optionally push it to a Docker repository. We'll use Dockerhub as an example:
```
docker build . -t gitlab_pr_agent --target gitlab_webhook -f docker/Dockerfile
docker push codiumai/pr-agent:gitlab_webhook # Push to your Docker repository
```
6. Create a webhook in GitLab. Set the URL to ```http[s]://<PR_AGENT_HOSTNAME>/webhook```, the secret token to the generated secret from step 2, and enable the triggers `push`, `comments` and `merge request events`.
7. Test your installation by opening a merge request or commenting on a merge request using one of CodiumAI's commands.
boxes
6. Test your installation by opening a merge request or commenting or a merge request using one of CodiumAI's commands.

View File

@ -279,6 +279,10 @@ Using a combination of both can help the AI model to provide relevant and tailor
<td><b>persistent_comment</b></td>
<td>If set to true, the improve comment will be persistent, meaning that every new improve request will edit the previous one. Default is false.</td>
</tr>
<tr>
<td><b>self_reflect_on_suggestions</b></td>
<td>If set to true, the improve tool will calculate an importance score for each suggestion [1-10], and sort the suggestion labels group based on this score. Default is true.</td>
</tr>
<tr>
<td><b>suggestions_score_threshold</b></td>
<td> Any suggestion with importance score less than this threshold will be removed. Default is 0. Highly recommend not to set this value above 7-8, since above it may clip relevant suggestions that can be useful. </td>

View File

@ -160,13 +160,3 @@ ignore_pr_target_branches = ["qa"]
Where the `ignore_pr_source_branches` and `ignore_pr_target_branches` are lists of regex patterns to match the source and target branches you want to ignore.
They are not mutually exclusive, you can use them together or separately.
To allow only specific folders (often needed in large monorepos), set:
```
[config]
allow_only_specific_folders=['folder1','folder2']
```
For the configuration above, automatic feedback will only be triggered when the PR changes include files from 'folder1' or 'folder2'

View File

@ -133,26 +133,9 @@ Your [application default credentials](https://cloud.google.com/docs/authenticat
If you do want to set explicit credentials, then you can use the `GOOGLE_APPLICATION_CREDENTIALS` environment variable set to a path to a json credentials file.
### Google AI Studio
To use [Google AI Studio](https://aistudio.google.com/) models, set the relevant models in the configuration section of the configuration file:
```toml
[config] # in configuration.toml
model="google_ai_studio/gemini-1.5-flash"
model_turbo="google_ai_studio/gemini-1.5-flash"
fallback_models=["google_ai_studio/gemini-1.5-flash"]
[google_ai_studio] # in .secrets.toml
gemini_api_key = "..."
```
If you don't want to set the API key in the .secrets.toml file, you can set the `GOOGLE_AI_STUDIO.GEMINI_API_KEY` environment variable.
### Anthropic
To use Anthropic models, set the relevant models in the configuration section of the configuration file:
```
[config]
model="anthropic/claude-3-opus-20240229"

View File

@ -38,8 +38,6 @@ MAX_TOKENS = {
'vertex_ai/gemini-1.5-pro': 1048576,
'vertex_ai/gemini-1.5-flash': 1048576,
'vertex_ai/gemma2': 8200,
'gemini/gemini-1.5-pro': 1048576,
'gemini/gemini-1.5-flash': 1048576,
'codechat-bison': 6144,
'codechat-bison-32k': 32000,
'anthropic.claude-instant-v1': 100000,

View File

@ -83,11 +83,6 @@ class LiteLLMAIHandler(BaseAiHandler):
litellm.vertex_location = get_settings().get(
"VERTEXAI.VERTEX_LOCATION", None
)
# Google AI Studio
# SEE https://docs.litellm.ai/docs/providers/gemini
if get_settings().get("GOOGLE_AI_STUDIO.GEMINI_API_KEY", None):
os.environ["GEMINI_API_KEY"] = get_settings().google_ai_studio.gemini_api_key
def prepare_logs(self, response, system, user, resp, finish_reason):
response_log = response.dict().copy()
response_log['system'] = system

View File

@ -1,7 +1,6 @@
from os import environ
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
import openai
from openai import APIError, AsyncOpenAI, RateLimitError, Timeout
from openai.error import APIError, RateLimitError, Timeout, TryAgain
from retry import retry
from pr_agent.config_loader import get_settings
@ -15,7 +14,7 @@ class OpenAIHandler(BaseAiHandler):
# Initialize OpenAIHandler specific attributes here
try:
super().__init__()
environ["OPENAI_API_KEY"] = get_settings().openai.key
openai.api_key = get_settings().openai.key
if get_settings().get("OPENAI.ORG", None):
openai.organization = get_settings().openai.org
if get_settings().get("OPENAI.API_TYPE", None):
@ -25,7 +24,7 @@ class OpenAIHandler(BaseAiHandler):
if get_settings().get("OPENAI.API_VERSION", None):
openai.api_version = get_settings().openai.api_version
if get_settings().get("OPENAI.API_BASE", None):
environ["OPENAI_BASE_URL"] = get_settings().openai.api_base
openai.api_base = get_settings().openai.api_base
except AttributeError as e:
raise ValueError("OpenAI key is required") from e
@ -37,7 +36,7 @@ class OpenAIHandler(BaseAiHandler):
"""
return get_settings().get("OPENAI.DEPLOYMENT_ID", None)
@retry(exceptions=(APIError, Timeout, AttributeError, RateLimitError),
@retry(exceptions=(APIError, Timeout, TryAgain, AttributeError, RateLimitError),
tries=OPENAI_RETRIES, delay=2, backoff=2, jitter=(1, 3))
async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2):
try:
@ -45,19 +44,20 @@ class OpenAIHandler(BaseAiHandler):
get_logger().info("System: ", system)
get_logger().info("User: ", user)
messages = [{"role": "system", "content": system}, {"role": "user", "content": user}]
client = AsyncOpenAI()
chat_completion = await client.chat.completions.create(
chat_completion = await openai.ChatCompletion.acreate(
model=model,
deployment_id=deployment_id,
messages=messages,
temperature=temperature,
)
resp = chat_completion.choices[0].message.content
finish_reason = chat_completion.choices[0].finish_reason
usage = chat_completion.usage
resp = chat_completion["choices"][0]['message']['content']
finish_reason = chat_completion["choices"][0]["finish_reason"]
usage = chat_completion.get("usage")
get_logger().info("AI response", response=resp, messages=messages, finish_reason=finish_reason,
model=model, usage=usage)
return resp, finish_reason
except (APIError, Timeout) as e:
except (APIError, Timeout, TryAgain) as e:
get_logger().error("Error during OpenAI inference: ", e)
raise
except (RateLimitError) as e:
@ -65,4 +65,4 @@ class OpenAIHandler(BaseAiHandler):
raise
except (Exception) as e:
get_logger().error("Unknown error during OpenAI inference: ", e)
raise
raise TryAgain from e

View File

@ -43,10 +43,6 @@ class PRReviewHeader(str, Enum):
INCREMENTAL = "## Incremental PR Reviewer Guide"
class PRDescriptionHeader(str, Enum):
CHANGES_WALKTHROUGH = "### **Changes walkthrough** 📝"
def get_setting(key: str) -> Any:
try:
key = key.upper()
@ -1028,7 +1024,8 @@ def process_description(description_full: str) -> Tuple[str, List]:
if not description_full:
return "", []
description_split = description_full.split(PRDescriptionHeader.CHANGES_WALKTHROUGH.value)
split_str = "### **Changes walkthrough** 📝"
description_split = description_full.split(split_str)
base_description_str = description_split[0]
changes_walkthrough_str = ""
files = []
@ -1063,9 +1060,6 @@ def process_description(description_full: str) -> Tuple[str, List]:
if not res or res.lastindex != 4:
pattern_back = r'<details>\s*<summary><strong>(.*?)</strong><dd><code>(.*?)</code>.*?</summary>\s*<hr>\s*(.*?)\n\n\s*(.*?)</details>'
res = re.search(pattern_back, file_data, re.DOTALL)
if not res or res.lastindex != 4:
pattern_back = r'<details>\s*<summary><strong>(.*?)</strong>\s*<dd><code>(.*?)</code>.*?</summary>\s*<hr>\s*(.*?)\s*-\s*(.*?)\s*</details>' # looking for hypen ('- ')
res = re.search(pattern_back, file_data, re.DOTALL)
if res and res.lastindex == 4:
short_filename = res.group(1).strip()
short_summary = res.group(2).strip()

View File

@ -5,7 +5,7 @@ from urllib.parse import urlparse
from ..algo.file_filter import filter_ignored
from ..log import get_logger
from ..algo.language_handler import is_valid_file
from ..algo.utils import clip_tokens, find_line_number_of_relevant_line_in_file, load_large_diff, PRDescriptionHeader
from ..algo.utils import clip_tokens, find_line_number_of_relevant_line_in_file, load_large_diff
from ..config_loader import get_settings
from .git_provider import GitProvider
from pr_agent.algo.types import EDIT_TYPE, FilePatchInfo
@ -404,7 +404,7 @@ class AzureDevopsProvider(GitProvider):
pr_body = pr_body[:ind]
if len(pr_body) > MAX_PR_DESCRIPTION_AZURE_LENGTH:
changes_walkthrough_text = PRDescriptionHeader.CHANGES_WALKTHROUGH.value
changes_walkthrough_text = '## **Changes walkthrough**'
ind = pr_body.find(changes_walkthrough_text)
if ind != -1:
pr_body = pr_body[:ind]

View File

@ -43,9 +43,6 @@ api_base = "" # the base url for your local Llama 2, Code Llama, and other model
vertex_project = "" # the google cloud platform project name for your vertexai deployment
vertex_location = "" # the google cloud platform location for your vertexai deployment
[google_ai_studio]
gemini_api_key = "" # the google AI Studio API key
[github]
# ---- Set the following only for deployment type == "user"
user_token = "" # A GitHub personal access token with 'repo' scope.
@ -63,7 +60,6 @@ webhook_secret = "<WEBHOOK SECRET>" # Optional, may be commented out.
[gitlab]
# Gitlab personal access token
personal_access_token = ""
shared_secret = "" # webhook secret
[bitbucket]
# For Bitbucket personal/repository bearer token

View File

@ -7,7 +7,6 @@ fallback_models=["gpt-4o-2024-05-13"]
git_provider="github"
publish_output=true
publish_output_progress=true
publish_output_no_suggestions=true
verbosity_level=0 # 0,1,2
use_extra_bad_extensions=false
# Configurations
@ -122,6 +121,7 @@ max_history_len=4
# enable to apply suggestion 💎
apply_suggestions_checkbox=true
# suggestions scoring
self_reflect_on_suggestions=true
suggestions_score_threshold=0 # [0-10]| recommend not to set this value above 8, since above it may clip highly relevant suggestions
# params for '/improve --extended' mode
auto_extended_mode=true

View File

@ -14,10 +14,10 @@ The PR code diff will be in the following structured format:
@@ ... @@ def func1():
__new hunk__
unchanged code line0 in the PR
unchanged code line1 in the PR
+new code line2 added in the PR
unchanged code line3 in the PR
11 unchanged code line0 in the PR
12 unchanged code line1 in the PR
13 +new code line2 added in the PR
14 unchanged code line3 in the PR
__old hunk__
unchanged code line0
unchanged code line1
@ -35,6 +35,7 @@ __new hunk__
======
- In the format above, the diff is organized into separate '__new hunk__' and '__old hunk__' sections for each code chunk. '__new hunk__' contains the updated code, while '__old hunk__' shows the removed code. If no code was removed in a specific chunk, the __old hunk__ section will be omitted.
- Line numbers were added for the '__new hunk__' sections to help referencing specific lines in the code suggestions. These numbers are for reference only and are not part of the actual code.
- Code lines are prefixed with symbols: '+' for new code added in the PR, '-' for code removed, and ' ' for unchanged code.
{%- if is_ai_metadata %}
- When available, an AI-generated summary will precede each file's diff, with a high-level overview of the changes. Note that this summary may not be fully accurate or complete.
@ -43,7 +44,7 @@ __new hunk__
Specific guidelines for generating code suggestions:
- Provide up to {{ num_code_suggestions }} distinct and insightful code suggestions.
- Focus solely on enhancing new code introduced in the PR, identified by '+' prefixes in '__new hunk__' sections.
- Focus solely on enhancing new code introduced in the PR, identified by '+' prefixes in '__new hunk__' sections (after the line numbers).
- Prioritize suggestions that address potential issues, critical problems, and bugs in the PR code. Avoid repeating changes already implemented in the PR. If no pertinent suggestions are applicable, return an empty list.
- Don't suggest to add docstring, type hints, or comments, to remove unused imports, or to use more specific exception types.
- When referencing variables or names from the code, enclose them in backticks (`). Example: "ensure that `variable_name` is..."
@ -66,10 +67,12 @@ class CodeSuggestion(BaseModel):
relevant_file: str = Field(description="Full path of the relevant file")
language: str = Field(description="Programming language used by the relevant file")
suggestion_content: str = Field(description="An actionable suggestion to enhance, improve or fix the new code introduced in the PR. Don't present here actual code snippets, just the suggestion. Be short and concise")
existing_code: str = Field(description="A short code snippet from a '__new hunk__' section that the suggestion aims to enhance or fix. Include only complete code lines. Use ellipsis (...) for brevity if needed. This snippet should represent the specific PR code targeted for improvement.")
existing_code: str = Field(description="A short code snippet from a '__new hunk__' section that the suggestion aims to enhance or fix. Include only complete code lines, without line numbers. Use ellipsis (...) for brevity if needed. This snippet should represent the specific PR code targeted for improvement.")
improved_code: str = Field(description="A refined code snippet that replaces the 'existing_code' snippet after implementing the suggestion.")
one_sentence_summary: str = Field(description="A concise, single-sentence overview of the suggested improvement. Focus on the 'what'. Be general, and avoid method or variable names.")
label: str = Field(description="A single, descriptive label that best characterizes the suggestion type. Possible labels include 'security', 'possible bug', 'possible issue', 'performance', 'enhancement', 'best practice', 'maintainability', 'typo'. Other relevant labels are also acceptable.")
relevant_lines_start: int = Field(description="The relevant line number, from a '__new hunk__' section, where the suggestion starts (inclusive). Should be derived from the hunk line numbers, and correspond to the beginning of the 'existing code' snippet above")
relevant_lines_end: int = Field(description="The relevant line number, from a '__new hunk__' section, where the suggestion ends (inclusive). Should be derived from the hunk line numbers, and correspond to the end of the 'existing code' snippet above")
label: str = Field(description="A single, descriptive label that best characterizes the suggestion type. Possible labels include 'security', 'possible bug', 'possible issue', 'performance', 'enhancement', 'best practice', 'maintainability'. Other relevant labels are also acceptable.")
class PRCodeSuggestions(BaseModel):
@ -92,6 +95,8 @@ code_suggestions:
...
one_sentence_summary: |
...
relevant_lines_start: 12
relevant_lines_end: 13
label: |
...
```
@ -107,7 +112,7 @@ Title: '{{title}}'
The PR Diff:
======
{{ diff_no_line_numbers|trim }}
{{ diff|trim }}
======

View File

@ -15,8 +15,8 @@ Be particularly vigilant for suggestions that:
- Contradict or ignore parts of the PR's modifications
In such cases, assign the suggestion a score of 0.
Evaluate each valid suggestion by scoring its potential impact on the PR's correctness, quality and functionality.
In addition, you should also detect the line numbers in the '__new hunk__' section that correspond to the 'existing_code' snippet.
For valid suggestions, your role is to provide an impartial and precise score assessment that accurately reflects each suggestion's potential impact on the PR's correctness, quality and functionality.
Key guidelines for evaluation:
- Thoroughly examine both the suggestion content and the corresponding PR code diff. Be vigilant for potential errors in each suggestion, ensuring they are logically sound, accurate, and directly derived from the PR code diff.
@ -82,8 +82,6 @@ The output must be a YAML object equivalent to type $PRCodeSuggestionsFeedback,
class CodeSuggestionFeedback(BaseModel):
suggestion_summary: str = Field(description="Repeated from the input")
relevant_file: str = Field(description="Repeated from the input")
relevant_lines_start: int = Field(description="The relevant line number, from a '__new hunk__' section, where the suggestion starts (inclusive). Should be derived from the hunk line numbers, and correspond to the beginning of the relevant 'existing code' snippet")
relevant_lines_end: int = Field(description="The relevant line number, from a '__new hunk__' section, where the suggestion ends (inclusive). Should be derived from the hunk line numbers, and correspond to the end of the relevant 'existing code' snippet")
suggestion_score: int = Field(description="Evaluate the suggestion and assign a score from 0 to 10. Give 0 if the suggestion is wrong. For valid suggestions, score from 1 (lowest impact/importance) to 10 (highest impact/importance).")
why: str = Field(description="Briefly explain the score given in 1-2 sentences, focusing on the suggestion's impact, relevance, and accuracy.")
@ -98,8 +96,6 @@ code_suggestions:
- suggestion_summary: |
Use a more descriptive variable name here
relevant_file: "src/file1.py"
relevant_lines_start: 13
relevant_lines_end: 14
suggestion_score: 6
why: |
The variable name 't' is not descriptive enough

View File

@ -1,7 +1,6 @@
import asyncio
import copy
import textwrap
import traceback
from functools import partial
from typing import Dict, List
from jinja2 import Environment, StrictUndefined
@ -45,7 +44,7 @@ class PRCodeSuggestions:
self.is_extended = self._get_is_extended(args or [])
except:
self.is_extended = False
num_code_suggestions = int(get_settings().pr_code_suggestions.num_code_suggestions_per_chunk)
num_code_suggestions = get_settings().pr_code_suggestions.num_code_suggestions_per_chunk
self.ai_handler = ai_handler()
@ -70,7 +69,6 @@ class PRCodeSuggestions:
"description": self.pr_description,
"language": self.main_language,
"diff": "", # empty diff for initial calculation
"diff_no_line_numbers": "", # empty diff for initial calculation
"num_code_suggestions": num_code_suggestions,
"extra_instructions": get_settings().pr_code_suggestions.extra_instructions,
"commit_messages_str": self.git_provider.get_commit_messages(),
@ -112,17 +110,15 @@ class PRCodeSuggestions:
if not data:
data = {"code_suggestions": []}
if (data is None or 'code_suggestions' not in data or not data['code_suggestions']):
pr_body = "## PR Code Suggestions ✨\n\nNo code suggestions found for the PR."
if (data is None or 'code_suggestions' not in data or not data['code_suggestions']
and get_settings().config.publish_output):
get_logger().warning('No code suggestions found for the PR.')
if get_settings().config.publish_output and get_settings().config.publish_output_no_suggestions:
get_logger().debug(f"PR output", artifact=pr_body)
if self.progress_response:
self.git_provider.edit_comment(self.progress_response, body=pr_body)
else:
self.git_provider.publish_comment(pr_body)
pr_body = "## PR Code Suggestions ✨\n\nNo code suggestions found for the PR."
get_logger().debug(f"PR output", artifact=pr_body)
if self.progress_response:
self.git_provider.edit_comment(self.progress_response, body=pr_body)
else:
get_settings().data = {"artifact": ""}
self.git_provider.publish_comment(pr_body)
return
if (not self.is_extended and get_settings().pr_code_suggestions.rank_suggestions) or \
@ -199,11 +195,8 @@ class PRCodeSuggestions:
self.git_provider.remove_comment(self.progress_response)
else:
get_logger().info('Code suggestions generated for PR, but not published since publish_output is False.')
get_settings().data = {"artifact": data}
return
except Exception as e:
get_logger().error(f"Failed to generate code suggestions for PR, error: {e}",
artifact={"traceback": traceback.format_exc()})
get_logger().error(f"Failed to generate code suggestions for PR, error: {e}")
if get_settings().config.publish_output:
if self.progress_response:
self.progress_response.delete()
@ -335,7 +328,7 @@ class PRCodeSuggestions:
if self.patches_diff:
get_logger().debug(f"PR diff", artifact=self.patches_diff)
self.prediction = await self._get_prediction(model, self.patches_diff, self.patches_diff_no_line_number)
self.prediction = await self._get_prediction(model, self.patches_diff)
else:
get_logger().warning(f"Empty PR diff")
self.prediction = None
@ -343,76 +336,42 @@ class PRCodeSuggestions:
data = self.prediction
return data
async def _get_prediction(self, model: str, patches_diff: str, patches_diff_no_line_number: str) -> dict:
async def _get_prediction(self, model: str, patches_diff: str) -> dict:
variables = copy.deepcopy(self.vars)
variables["diff"] = patches_diff # update diff
variables["diff_no_line_numbers"] = patches_diff_no_line_number # update diff
environment = Environment(undefined=StrictUndefined)
system_prompt = environment.from_string(self.pr_code_suggestions_prompt_system).render(variables)
user_prompt = environment.from_string(get_settings().pr_code_suggestions_prompt.user).render(variables)
response, finish_reason = await self.ai_handler.chat_completion(
model=model, temperature=get_settings().config.temperature, system=system_prompt, user=user_prompt)
if not get_settings().config.publish_output:
get_settings().system_prompt = system_prompt
get_settings().user_prompt = user_prompt
# load suggestions from the AI response
data = self._prepare_pr_code_suggestions(response)
# self-reflect on suggestions (mandatory, since line numbers are generated now here)
model_reflection = get_settings().config.model
response_reflect = await self.self_reflect_on_suggestions(data["code_suggestions"],
patches_diff, model=model_reflection)
if response_reflect:
response_reflect_yaml = load_yaml(response_reflect)
code_suggestions_feedback = response_reflect_yaml["code_suggestions"]
if len(code_suggestions_feedback) == len(data["code_suggestions"]):
for i, suggestion in enumerate(data["code_suggestions"]):
try:
suggestion["score"] = code_suggestions_feedback[i]["suggestion_score"]
suggestion["score_why"] = code_suggestions_feedback[i]["why"]
if 'relevant_lines_start' not in suggestion:
relevant_lines_start = code_suggestions_feedback[i].get('relevant_lines_start', -1)
relevant_lines_end = code_suggestions_feedback[i].get('relevant_lines_end', -1)
suggestion['relevant_lines_start'] = relevant_lines_start
suggestion['relevant_lines_end'] = relevant_lines_end
if relevant_lines_start < 0 or relevant_lines_end < 0:
suggestion["score"] = 0
# self-reflect on suggestions
if get_settings().pr_code_suggestions.self_reflect_on_suggestions:
model_turbo = get_settings().config.model_turbo # use turbo model for self-reflection, since it is an easier task
response_reflect = await self.self_reflect_on_suggestions(data["code_suggestions"],
patches_diff, model=model_turbo)
if response_reflect:
response_reflect_yaml = load_yaml(response_reflect)
code_suggestions_feedback = response_reflect_yaml["code_suggestions"]
if len(code_suggestions_feedback) == len(data["code_suggestions"]):
for i, suggestion in enumerate(data["code_suggestions"]):
try:
if get_settings().config.publish_output:
suggestion_statistics_dict = {'score': int(suggestion["score"]),
'label': suggestion["label"].lower().strip()}
get_logger().info(f"PR-Agent suggestions statistics",
statistics=suggestion_statistics_dict, analytics=True)
except Exception as e:
get_logger().error(f"Failed to log suggestion statistics, error: {e}")
pass
except Exception as e: #
get_logger().error(f"Error processing suggestion score {i}",
artifact={"suggestion": suggestion,
"code_suggestions_feedback": code_suggestions_feedback[i]})
suggestion["score"] = 7
suggestion["score_why"] = ""
# if the before and after code is the same, clear one of them
try:
if suggestion['existing_code'] == suggestion['improved_code']:
get_logger().debug(
f"edited improved suggestion {i + 1}, because equal to existing code: {suggestion['existing_code']}")
if get_settings().pr_code_suggestions.commitable_code_suggestions:
suggestion['improved_code'] = "" # we need 'existing_code' to locate the code in the PR
else:
suggestion['existing_code'] = ""
except Exception as e:
get_logger().error(f"Error processing suggestion {i + 1}, error: {e}")
else:
# get_logger().error(f"Could not self-reflect on suggestions. using default score 7")
for i, suggestion in enumerate(data["code_suggestions"]):
suggestion["score"] = 7
suggestion["score_why"] = ""
suggestion["score"] = code_suggestions_feedback[i]["suggestion_score"]
suggestion["score_why"] = code_suggestions_feedback[i]["why"]
except Exception as e: #
get_logger().error(f"Error processing suggestion score {i}",
artifact={"suggestion": suggestion,
"code_suggestions_feedback": code_suggestions_feedback[i]})
suggestion["score"] = 7
suggestion["score_why"] = ""
else:
# get_logger().error(f"Could not self-reflect on suggestions. using default score 7")
for i, suggestion in enumerate(data["code_suggestions"]):
suggestion["score"] = 7
suggestion["score_why"] = ""
return data
@ -422,10 +381,10 @@ class PRCodeSuggestions:
suggestion_truncation_message = get_settings().get("PR_CODE_SUGGESTIONS.SUGGESTION_TRUNCATION_MESSAGE", "")
if max_code_suggestion_length > 0:
if len(suggestion['improved_code']) > max_code_suggestion_length:
get_logger().info(f"Truncated suggestion from {len(suggestion['improved_code'])} "
f"characters to {max_code_suggestion_length} characters")
suggestion['improved_code'] = suggestion['improved_code'][:max_code_suggestion_length]
suggestion['improved_code'] += f"\n{suggestion_truncation_message}"
get_logger().info(f"Truncated suggestion from {len(suggestion['improved_code'])} "
f"characters to {max_code_suggestion_length} characters")
return suggestion
def _prepare_pr_code_suggestions(self, predictions: str) -> Dict:
@ -440,7 +399,8 @@ class PRCodeSuggestions:
one_sentence_summary_list = []
for i, suggestion in enumerate(data['code_suggestions']):
try:
needed_keys = ['one_sentence_summary', 'label', 'relevant_file']
needed_keys = ['one_sentence_summary', 'label', 'relevant_file', 'relevant_lines_start',
'relevant_lines_end']
is_valid_keys = True
for key in needed_keys:
if key not in suggestion:
@ -462,6 +422,13 @@ class PRCodeSuggestions:
continue
if ('existing_code' in suggestion) and ('improved_code' in suggestion):
if suggestion['existing_code'] == suggestion['improved_code']:
get_logger().debug(
f"edited improved suggestion {i + 1}, because equal to existing code: {suggestion['existing_code']}")
if get_settings().pr_code_suggestions.commitable_code_suggestions:
suggestion['improved_code'] = "" # we need 'existing_code' to locate the code in the PR
else:
suggestion['existing_code'] = ""
suggestion = self._truncate_if_needed(suggestion)
one_sentence_summary_list.append(suggestion['one_sentence_summary'])
suggestion_list.append(suggestion)
@ -564,33 +531,9 @@ class PRCodeSuggestions:
return True
return False
def remove_line_numbers(self, patches_diff_list: List[str]) -> List[str]:
# create a copy of the patches_diff_list, without line numbers for '__new hunk__' sections
try:
self.patches_diff_list_no_line_numbers = []
for patches_diff in self.patches_diff_list:
patches_diff_lines = patches_diff.splitlines()
for i, line in enumerate(patches_diff_lines):
if line.strip():
if line[0].isdigit():
# find the first letter in the line that starts with a valid letter
for j, char in enumerate(line):
if not char.isdigit():
patches_diff_lines[i] = line[j + 1:]
break
self.patches_diff_list_no_line_numbers.append('\n'.join(patches_diff_lines))
return self.patches_diff_list_no_line_numbers
except Exception as e:
get_logger().error(f"Error removing line numbers from patches_diff_list, error: {e}")
return patches_diff_list
async def _prepare_prediction_extended(self, model: str) -> dict:
self.patches_diff_list = get_pr_multi_diffs(self.git_provider, self.token_handler, model,
max_calls=get_settings().pr_code_suggestions.max_number_of_calls)
# create a copy of the patches_diff_list, without line numbers for '__new hunk__' sections
self.patches_diff_list_no_line_numbers = self.remove_line_numbers(self.patches_diff_list)
if self.patches_diff_list:
get_logger().info(f"Number of PR chunk calls: {len(self.patches_diff_list)}")
get_logger().debug(f"PR diff:", artifact=self.patches_diff_list)
@ -598,14 +541,12 @@ class PRCodeSuggestions:
# parallelize calls to AI:
if get_settings().pr_code_suggestions.parallel_calls:
prediction_list = await asyncio.gather(
*[self._get_prediction(model, patches_diff, patches_diff_no_line_numbers) for
patches_diff, patches_diff_no_line_numbers in
zip(self.patches_diff_list, self.patches_diff_list_no_line_numbers)])
*[self._get_prediction(model, patches_diff) for patches_diff in self.patches_diff_list])
self.prediction_list = prediction_list
else:
prediction_list = []
for patches_diff, patches_diff_no_line_numbers in zip(self.patches_diff_list, self.patches_diff_list_no_line_numbers):
prediction = await self._get_prediction(model, patches_diff, patches_diff_no_line_numbers)
for i, patches_diff in enumerate(self.patches_diff_list):
prediction = await self._get_prediction(model, patches_diff)
prediction_list.append(prediction)
data = {"code_suggestions": []}
@ -614,16 +555,18 @@ class PRCodeSuggestions:
score_threshold = max(1, int(get_settings().pr_code_suggestions.suggestions_score_threshold))
for i, prediction in enumerate(predictions["code_suggestions"]):
try:
score = int(prediction.get("score", 1))
if score >= score_threshold:
data["code_suggestions"].append(prediction)
if get_settings().pr_code_suggestions.self_reflect_on_suggestions:
score = int(prediction.get("score", 1))
if score >= score_threshold:
data["code_suggestions"].append(prediction)
else:
get_logger().info(
f"Removing suggestions {i} from call {j}, because score is {score}, and score_threshold is {score_threshold}",
artifact=prediction)
else:
get_logger().info(
f"Removing suggestions {i} from call {j}, because score is {score}, and score_threshold is {score_threshold}",
artifact=prediction)
data["code_suggestions"].append(prediction)
except Exception as e:
get_logger().error(f"Error getting PR diff for suggestion {i} in call {j}, error: {e}",
artifact={"prediction": prediction})
get_logger().error(f"Error getting PR diff for suggestion {i} in call {j}, error: {e}")
self.data = data
else:
get_logger().warning(f"Empty PR diff list")
@ -674,7 +617,7 @@ class PRCodeSuggestions:
if get_settings().pr_code_suggestions.final_clip_factor != 1:
max_len = max(
len(data_sorted),
int(get_settings().pr_code_suggestions.num_code_suggestions_per_chunk),
get_settings().pr_code_suggestions.num_code_suggestions_per_chunk,
)
new_len = int(0.5 + max_len * get_settings().pr_code_suggestions.final_clip_factor)
if new_len < len(data_sorted):
@ -707,7 +650,10 @@ class PRCodeSuggestions:
header = f"Suggestion"
delta = 66
header += "&nbsp; " * delta
pr_body += f"""<thead><tr><td>Category</td><td align=left>{header}</td><td align=center>Score</td></tr>"""
if get_settings().pr_code_suggestions.self_reflect_on_suggestions:
pr_body += f"""<thead><tr><td>Category</td><td align=left>{header}</td><td align=center>Score</td></tr>"""
else:
pr_body += f"""<thead><tr><td>Category</td><td align=left>{header}</td></tr>"""
pr_body += """<tbody>"""
suggestions_labels = dict()
# add all suggestions related to each label
@ -718,11 +664,12 @@ class PRCodeSuggestions:
suggestions_labels[label].append(suggestion)
# sort suggestions_labels by the suggestion with the highest score
suggestions_labels = dict(
sorted(suggestions_labels.items(), key=lambda x: max([s['score'] for s in x[1]]), reverse=True))
# sort the suggestions inside each label group by score
for label, suggestions in suggestions_labels.items():
suggestions_labels[label] = sorted(suggestions, key=lambda x: x['score'], reverse=True)
if get_settings().pr_code_suggestions.self_reflect_on_suggestions:
suggestions_labels = dict(
sorted(suggestions_labels.items(), key=lambda x: max([s['score'] for s in x[1]]), reverse=True))
# sort the suggestions inside each label group by score
for label, suggestions in suggestions_labels.items():
suggestions_labels[label] = sorted(suggestions, key=lambda x: x['score'], reverse=True)
counter_suggestions = 0
for label, suggestions in suggestions_labels.items():
@ -781,14 +728,16 @@ class PRCodeSuggestions:
{example_code.rstrip()}
"""
pr_body += f"<details><summary>Suggestion importance[1-10]: {suggestion['score']}</summary>\n\n"
pr_body += f"Why: {suggestion['score_why']}\n\n"
pr_body += f"</details>"
if get_settings().pr_code_suggestions.self_reflect_on_suggestions:
pr_body += f"<details><summary>Suggestion importance[1-10]: {suggestion['score']}</summary>\n\n"
pr_body += f"Why: {suggestion['score_why']}\n\n"
pr_body += f"</details>"
pr_body += f"</details>"
# # add another column for 'score'
pr_body += f"</td><td align=center>{suggestion['score']}\n\n"
if get_settings().pr_code_suggestions.self_reflect_on_suggestions:
pr_body += f"</td><td align=center>{suggestion['score']}\n\n"
pr_body += f"</td></tr>"
counter_suggestions += 1

View File

@ -12,7 +12,7 @@ from pr_agent.algo.ai_handlers.litellm_ai_handler import LiteLLMAIHandler
from pr_agent.algo.pr_processing import get_pr_diff, retry_with_fallback_models, get_pr_diff_multiple_patchs, \
OUTPUT_BUFFER_TOKENS_HARD_THRESHOLD
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.algo.utils import set_custom_labels, PRDescriptionHeader
from pr_agent.algo.utils import set_custom_labels
from pr_agent.algo.utils import load_yaml, get_user_labels, ModelType, show_relevant_configurations, get_max_tokens, \
clip_tokens
from pr_agent.config_loader import get_settings
@ -501,7 +501,7 @@ extra_file_yaml =
pr_body += "</details>\n"
elif 'pr_files' in key.lower() and get_settings().pr_description.enable_semantic_files_types:
changes_walkthrough, pr_file_changes = self.process_pr_files_prediction(changes_walkthrough, value)
changes_walkthrough = f"{PRDescriptionHeader.CHANGES_WALKTHROUGH.value}\n{changes_walkthrough}"
changes_walkthrough = f"### **Changes walkthrough** 📝\n{changes_walkthrough}"
else:
# if the value is a list, join its items by comma
if isinstance(value, list):

View File

@ -4,12 +4,10 @@ atlassian-python-api==3.41.4
azure-devops==7.1.0b3
azure-identity==1.15.0
boto3==1.33.6
certifi==2024.8.30
dynaconf==3.2.4
fastapi==0.111.0
GitPython==3.1.41
google-cloud-aiplatform==1.38.0
google-generativeai==0.8.3
google-cloud-storage==2.10.0
Jinja2==3.1.2
litellm==1.50.2

View File

@ -3,3 +3,4 @@
from setuptools import setup
setup()
print("aaa")