Move logic to _configure_claude_extended_thinking

This commit is contained in:
Kenny Dizi
2025-03-08 08:35:34 +07:00
parent 121d90a9da
commit f9d5e72058

View File

@ -120,6 +120,42 @@ class LiteLLMAIHandler(BaseAiHandler):
response_log['main_pr_language'] = 'unknown'
return response_log
def _configure_claude_extended_thinking(self, model: str, kwargs: dict) -> dict:
"""
Configure Claude extended thinking parameters if applicable.
Args:
model (str): The AI model being used
kwargs (dict): The keyword arguments for the model call
Returns:
dict: Updated kwargs with extended thinking configuration
"""
extended_thinking_budget_tokens = get_settings().config.get("extended_thinking_budget_tokens", 2048)
extended_thinking_max_output_tokens = get_settings().config.get("extended_thinking_max_output_tokens", 2048)
# Validate extended thinking parameters
if not isinstance(extended_thinking_budget_tokens, int) or extended_thinking_budget_tokens <= 0:
raise ValueError(f"extended_thinking_budget_tokens must be a positive integer, got {extended_thinking_budget_tokens}")
if not isinstance(extended_thinking_max_output_tokens, int) or extended_thinking_max_output_tokens <= 0:
raise ValueError(f"extended_thinking_max_output_tokens must be a positive integer, got {extended_thinking_max_output_tokens}")
if extended_thinking_max_output_tokens < extended_thinking_budget_tokens:
raise ValueError(f"extended_thinking_max_output_tokens ({extended_thinking_max_output_tokens}) must be greater than or equal to extended_thinking_budget_tokens ({extended_thinking_budget_tokens})")
kwargs["thinking"] = {
"type": "enabled",
"budget_tokens": extended_thinking_budget_tokens
}
get_logger().info(f"Adding max output tokens {extended_thinking_max_output_tokens} to model {model}, extended thinking budget tokens: {extended_thinking_budget_tokens}")
kwargs["max_tokens"] = extended_thinking_max_output_tokens
# temperature may only be set to 1 when thinking is enabled
if get_settings().config.verbosity_level >= 2:
get_logger().info("Temperature may only be set to 1 when thinking is enabled with claude models.")
kwargs["temperature"] = 1
return kwargs
def add_litellm_callbacks(selfs, kwargs) -> dict:
captured_extra = []
@ -247,28 +283,7 @@ class LiteLLMAIHandler(BaseAiHandler):
# https://docs.anthropic.com/en/docs/build-with-claude/extended-thinking
if (model in self.claude_extended_thinking_models) and get_settings().config.get("enable_claude_extended_thinking", False):
extended_thinking_budget_tokens = get_settings().config.get("extended_thinking_budget_tokens", 2048)
extended_thinking_max_output_tokens = get_settings().config.get("extended_thinking_max_output_tokens", 2048)
# Validate extended thinking parameters
if not isinstance(extended_thinking_budget_tokens, int) or extended_thinking_budget_tokens <= 0:
raise ValueError(f"extended_thinking_budget_tokens must be a positive integer, got {extended_thinking_budget_tokens}")
if not isinstance(extended_thinking_max_output_tokens, int) or extended_thinking_max_output_tokens <= 0:
raise ValueError(f"extended_thinking_max_output_tokens must be a positive integer, got {extended_thinking_max_output_tokens}")
if extended_thinking_max_output_tokens < extended_thinking_budget_tokens:
raise ValueError(f"extended_thinking_max_output_tokens ({extended_thinking_max_output_tokens}) must be greater than or equal to extended_thinking_budget_tokens ({extended_thinking_budget_tokens})")
kwargs["thinking"] = {
"type": "enabled",
"budget_tokens": extended_thinking_budget_tokens
}
get_logger().info(f"Adding max output tokens {extended_thinking_max_output_tokens} to model {model}, extended thinking budget tokens: {extended_thinking_budget_tokens}")
kwargs["max_tokens"] = extended_thinking_max_output_tokens
# temperature may only be set to 1 when thinking is enabled
if get_settings().config.verbosity_level >= 2:
get_logger().info("Temperature may only be set to 1 when thinking is enabled with claude models.")
kwargs["temperature"] = 1
kwargs = self._configure_claude_extended_thinking(model, kwargs)
if get_settings().litellm.get("enable_callbacks", False):
kwargs = self.add_litellm_callbacks(kwargs)