Support multiple model types for different reasoning tasks

This commit is contained in:
mrT23
2025-04-27 08:50:03 +03:00
parent 60a887ffe1
commit f53bd524c5
5 changed files with 27 additions and 17 deletions

View File

@ -416,18 +416,18 @@ Qodo Merge uses a dynamic strategy to generate code suggestions based on the siz
#### 1. Chunking large PRs
- Qodo Merge divides large PRs into 'chunks'.
- Each chunk contains up to `pr_code_suggestions.max_context_tokens` tokens (default: 14,000).
- Each chunk contains up to `pr_code_suggestions.max_context_tokens` tokens (default: 24,000).
#### 2. Generating suggestions
- For each chunk, Qodo Merge generates up to `pr_code_suggestions.num_code_suggestions_per_chunk` suggestions (default: 3).
- For each chunk, Qodo Merge generates up to `pr_code_suggestions.num_code_suggestions_per_chunk` suggestions (default: 4).
This approach has two main benefits:
- Scalability: The number of suggestions scales with the PR size, rather than being fixed.
- Quality: By processing smaller chunks, the AI can maintain higher quality suggestions, as larger contexts tend to decrease AI performance.
Note: Chunking is primarily relevant for large PRs. For most PRs (up to 500 lines of code), Qodo Merge will be able to process the entire code in a single call.
Note: Chunking is primarily relevant for large PRs. For most PRs (up to 600 lines of code), Qodo Merge will be able to process the entire code in a single call.
## Configuration options

View File

@ -12,7 +12,7 @@ from pr_agent.algo.git_patch_processing import (
from pr_agent.algo.language_handler import sort_files_by_main_languages
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.algo.types import EDIT_TYPE, FilePatchInfo
from pr_agent.algo.utils import ModelType, clip_tokens, get_max_tokens, get_weak_model
from pr_agent.algo.utils import ModelType, clip_tokens, get_max_tokens, get_model
from pr_agent.config_loader import get_settings
from pr_agent.git_providers.git_provider import GitProvider
from pr_agent.log import get_logger
@ -339,7 +339,9 @@ async def retry_with_fallback_models(f: Callable, model_type: ModelType = ModelT
def _get_all_models(model_type: ModelType = ModelType.REGULAR) -> List[str]:
if model_type == ModelType.WEAK:
model = get_weak_model()
model = get_model('model_weak')
elif model_type == ModelType.REASONING:
model = get_model('model_reasoning')
else:
model = get_settings().config.model
fallback_models = get_settings().config.fallback_models

View File

@ -30,12 +30,13 @@ from pr_agent.config_loader import get_settings, global_settings
from pr_agent.log import get_logger
def get_weak_model() -> str:
if get_settings().get("config.model_weak"):
def get_model(model_type: str = "model_weak") -> str:
if model_type == "model_weak" and get_settings().get("config.model_weak"):
return get_settings().config.model_weak
elif model_type == "model_reasoning" and get_settings().get("config.model_reasoning"):
return get_settings().config.model_reasoning
return get_settings().config.model
class Range(BaseModel):
line_start: int # should be 0-indexed
line_end: int
@ -45,6 +46,7 @@ class Range(BaseModel):
class ModelType(str, Enum):
REGULAR = "regular"
WEAK = "weak"
REASONING = "reasoning"
class PRReviewHeader(str, Enum):
REGULAR = "## PR Reviewer Guide"

View File

@ -6,8 +6,9 @@
[config]
# models
model="o4-mini"
fallback_models=["gpt-4.1"]
model_reasoning="o4-mini"
model="gpt-4.1"
fallback_models=["o4-mini"]
#model_weak="gpt-4o" # optional, a weaker model to use for some easier tasks
# CLI
git_provider="github"
@ -123,7 +124,7 @@ use_conversation_history=true
[pr_code_suggestions] # /improve #
max_context_tokens=16000
max_context_tokens=24000
#
commitable_code_suggestions = false
dual_publishing_score_threshold=-1 # -1 to disable, [0-10] to set the threshold (>=) for publishing a code suggestion both in a table and as commitable
@ -144,7 +145,7 @@ new_score_mechanism_th_high=9
new_score_mechanism_th_medium=7
# params for '/improve --extended' mode
auto_extended_mode=true
num_code_suggestions_per_chunk=3
num_code_suggestions_per_chunk=4
max_number_of_calls = 3
parallel_calls = true

View File

@ -19,7 +19,7 @@ from pr_agent.algo.pr_processing import (add_ai_metadata_to_diff_files,
retry_with_fallback_models)
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.algo.utils import (ModelType, load_yaml, replace_code_tags,
show_relevant_configurations, get_max_tokens, clip_tokens)
show_relevant_configurations, get_max_tokens, clip_tokens, get_model)
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import (AzureDevopsProvider, GithubProvider,
GitLabProvider, get_git_provider,
@ -121,7 +121,7 @@ class PRCodeSuggestions:
# if not self.is_extended:
# data = await retry_with_fallback_models(self._prepare_prediction, model_type=ModelType.REGULAR)
# else:
data = await retry_with_fallback_models(self._prepare_prediction_extended, model_type=ModelType.REGULAR)
data = await retry_with_fallback_models(self.prepare_prediction_main, model_type=ModelType.REGULAR)
if not data:
data = {"code_suggestions": []}
self.data = data
@ -416,9 +416,14 @@ class PRCodeSuggestions:
data = self._prepare_pr_code_suggestions(response)
# self-reflect on suggestions (mandatory, since line numbers are generated now here)
model_reflection = get_settings().config.model
model_reflect_with_reasoning = get_model('model_reasoning')
if model_reflect_with_reasoning == get_settings().config.model and model != get_settings().config.model and model == \
get_settings().config.fallback_models[0]:
# we are using a fallback model (should not happen on regular conditions)
get_logger().warning(f"Using the same model for self-reflection as the one used for suggestions")
model_reflect_with_reasoning = model
response_reflect = await self.self_reflect_on_suggestions(data["code_suggestions"],
patches_diff, model=model_reflection)
patches_diff, model=model_reflect_with_reasoning)
if response_reflect:
await self.analyze_self_reflection_response(data, response_reflect)
else:
@ -675,7 +680,7 @@ class PRCodeSuggestions:
get_logger().error(f"Error removing line numbers from patches_diff_list, error: {e}")
return patches_diff_list
async def _prepare_prediction_extended(self, model: str) -> dict:
async def prepare_prediction_main(self, model: str) -> dict:
# get PR diff
if get_settings().pr_code_suggestions.decouple_hunks:
self.patches_diff_list = get_pr_multi_diffs(self.git_provider,