lancedb integration

This commit is contained in:
PrashantDixit-dev
2023-12-25 00:38:24 +05:30
parent ccb116922f
commit d8d954bb0f
4 changed files with 286 additions and 89 deletions

View File

@ -12,7 +12,15 @@ For example:
Note that to perform retrieval, the `similar_issue` tool indexes all the repo previous issues (once).
To enable usage of the '**similar issue**' tool, you need to set the following keys in `.secrets.toml` (or in the relevant environment variables):
**Select VectorDBs** by changing `pr_similar_issue` parameter in `configuration.toml` file
2 VectorDBs are available to switch in
1. LanceDB
2. Pinecone
To enable usage of the '**similar issue**' tool for Pinecone, you need to set the following keys in `.secrets.toml` (or in the relevant environment variables):
```
[pinecone]
api_key = "..."

View File

@ -176,9 +176,12 @@ url = ""
skip_comments = false
force_update_dataset = false
max_issues_to_scan = 500
vectordb = "lancedb"
[pinecone]
# fill and place in .secrets.toml
#api_key = ...
# environment = "gcp-starter"
[lancedb]
uri = "./lancedb"

View File

@ -5,6 +5,7 @@ from typing import List
import openai
import pandas as pd
import pinecone
import lancedb
from pinecone_datasets import Dataset, DatasetMetadata
from pydantic import BaseModel, Field
@ -19,7 +20,7 @@ MODEL = "text-embedding-ada-002"
class PRSimilarIssue:
def __init__(self, issue_url: str, args: list = None):
def __init__(self, issue_url: str, ai_handler, args: list = None):
if get_settings().config.git_provider != "github":
raise Exception("Only github is supported for similar issue tool")
@ -35,75 +36,138 @@ class PRSimilarIssue:
repo_name_for_index = self.repo_name_for_index = repo_obj.full_name.lower().replace('/', '-').replace('_/', '-')
index_name = self.index_name = "codium-ai-pr-agent-issues"
# assuming pinecone api key and environment are set in secrets file
try:
api_key = get_settings().pinecone.api_key
environment = get_settings().pinecone.environment
except Exception:
if not self.cli_mode:
repo_name, original_issue_number = self.git_provider._parse_issue_url(self.issue_url.split('=')[-1])
issue_main = self.git_provider.repo_obj.get_issue(original_issue_number)
issue_main.create_comment("Please set pinecone api key and environment in secrets file")
raise Exception("Please set pinecone api key and environment in secrets file")
if get_settings().pr_similar_issue.vectordb == "pinecone":
# assuming pinecone api key and environment are set in secrets file
try:
api_key = get_settings().pinecone.api_key
environment = get_settings().pinecone.environment
except Exception:
if not self.cli_mode:
repo_name, original_issue_number = self.git_provider._parse_issue_url(self.issue_url.split('=')[-1])
issue_main = self.git_provider.repo_obj.get_issue(original_issue_number)
issue_main.create_comment("Please set pinecone api key and environment in secrets file")
raise Exception("Please set pinecone api key and environment in secrets file")
# check if index exists, and if repo is already indexed
run_from_scratch = False
if run_from_scratch: # for debugging
# check if index exists, and if repo is already indexed
run_from_scratch = False
if run_from_scratch: # for debugging
pinecone.init(api_key=api_key, environment=environment)
if index_name in pinecone.list_indexes():
get_logger().info('Removing index...')
pinecone.delete_index(index_name)
get_logger().info('Done')
upsert = True
pinecone.init(api_key=api_key, environment=environment)
if index_name in pinecone.list_indexes():
get_logger().info('Removing index...')
pinecone.delete_index(index_name)
if not index_name in pinecone.list_indexes():
run_from_scratch = True
upsert = False
else:
if get_settings().pr_similar_issue.force_update_dataset:
upsert = True
else:
pinecone_index = pinecone.Index(index_name=index_name)
res = pinecone_index.fetch([f"example_issue_{repo_name_for_index}"]).to_dict()
if res["vectors"]:
upsert = False
if run_from_scratch or upsert: # index the entire repo
get_logger().info('Indexing the entire repo...')
get_logger().info('Getting issues...')
issues = list(repo_obj.get_issues(state='all'))
get_logger().info('Done')
self._update_index_with_issues(issues, repo_name_for_index, upsert=upsert)
else: # update index if needed
pinecone_index = pinecone.Index(index_name=index_name)
issues_to_update = []
issues_paginated_list = repo_obj.get_issues(state='all')
counter = 1
for issue in issues_paginated_list:
if issue.pull_request:
continue
issue_str, comments, number = self._process_issue(issue)
issue_key = f"issue_{number}"
id = issue_key + "." + "issue"
res = pinecone_index.fetch([id]).to_dict()
is_new_issue = True
for vector in res["vectors"].values():
if vector['metadata']['repo'] == repo_name_for_index:
is_new_issue = False
break
if is_new_issue:
counter += 1
issues_to_update.append(issue)
else:
break
if issues_to_update:
get_logger().info(f'Updating index with {counter} new issues...')
self._update_index_with_issues(issues_to_update, repo_name_for_index, upsert=True)
else:
get_logger().info('No new issues to update')
elif get_settings().pr_similar_issue.vectordb == "lancedb":
self.db = lancedb.connect(get_settings().lancedb.uri)
self.table = None
run_from_scratch = False
if run_from_scratch: # for debugging
if index_name in self.db.table_names():
get_logger().info('Removing Table...')
self.db.drop_table(index_name)
get_logger().info('Done')
ingest = True
if index_name not in self.db.table_names():
run_from_scratch = True
ingest = False
else:
if get_settings().pr_similar_issue.force_update_dataset:
ingest = True
else:
self.table = self.db[index_name]
res = self.table.search().limit(len(self.table)).where(f"id='example_issue_{repo_name_for_index}'").to_list()
get_logger().info("result: ", res)
if res[0].get("vector"):
ingest = False
if run_from_scratch or ingest: # indexing the entire repo
get_logger().info('Indexing the entire repo...')
get_logger().info('Getting issues...')
issues = list(repo_obj.get_issues(state='all'))
get_logger().info('Done')
upsert = True
pinecone.init(api_key=api_key, environment=environment)
if not index_name in pinecone.list_indexes():
run_from_scratch = True
upsert = False
else:
if get_settings().pr_similar_issue.force_update_dataset:
upsert = True
else:
pinecone_index = pinecone.Index(index_name=index_name)
res = pinecone_index.fetch([f"example_issue_{repo_name_for_index}"]).to_dict()
if res["vectors"]:
upsert = False
if run_from_scratch or upsert: # index the entire repo
get_logger().info('Indexing the entire repo...')
get_logger().info('Getting issues...')
issues = list(repo_obj.get_issues(state='all'))
get_logger().info('Done')
self._update_index_with_issues(issues, repo_name_for_index, upsert=upsert)
else: # update index if needed
pinecone_index = pinecone.Index(index_name=index_name)
issues_to_update = []
issues_paginated_list = repo_obj.get_issues(state='all')
counter = 1
for issue in issues_paginated_list:
if issue.pull_request:
continue
issue_str, comments, number = self._process_issue(issue)
issue_key = f"issue_{number}"
id = issue_key + "." + "issue"
res = pinecone_index.fetch([id]).to_dict()
is_new_issue = True
for vector in res["vectors"].values():
if vector['metadata']['repo'] == repo_name_for_index:
is_new_issue = False
self._update_table_with_issues(issues, repo_name_for_index, ingest=ingest)
else: # update table if needed
issues_to_update = []
issues_paginated_list = repo_obj.get_issues(state='all')
counter = 1
for issue in issues_paginated_list:
if issue.pull_request:
continue
issue_str, comments, number = self._process_issue(issue)
issue_key = f"issue_{number}"
issue_id = issue_key + "." + "issue"
res = self.table.search().limit(len(self.table)).where(f"id='{issue_id}'").to_list()
is_new_issue = True
for r in res:
if r['metadata']['repo'] == repo_name_for_index:
is_new_issue = False
break
if is_new_issue:
counter += 1
issues_to_update.append(issue)
else:
break
if is_new_issue:
counter += 1
issues_to_update.append(issue)
else:
break
if issues_to_update:
get_logger().info(f'Updating index with {counter} new issues...')
self._update_index_with_issues(issues_to_update, repo_name_for_index, upsert=True)
else:
get_logger().info('No new issues to update')
if issues_to_update:
get_logger().info(f'Updating index with {counter} new issues...')
self._update_table_with_issues(issues_to_update, repo_name_for_index, ingest=True)
else:
get_logger().info('No new issues to update')
async def run(self):
get_logger().info('Getting issue...')
@ -116,38 +180,69 @@ class PRSimilarIssue:
get_logger().info('Querying...')
res = openai.Embedding.create(input=[issue_str], engine=MODEL)
embeds = [record['embedding'] for record in res['data']]
pinecone_index = pinecone.Index(index_name=self.index_name)
res = pinecone_index.query(embeds[0],
top_k=5,
filter={"repo": self.repo_name_for_index},
include_metadata=True).to_dict()
relevant_issues_number_list = []
relevant_comment_number_list = []
score_list = []
for r in res['matches']:
# skip example issue
if 'example_issue_' in r["id"]:
continue
if get_settings().pr_similar_issue.vectordb == "pinecone":
pinecone_index = pinecone.Index(index_name=self.index_name)
res = pinecone_index.query(embeds[0],
top_k=5,
filter={"repo": self.repo_name_for_index},
include_metadata=True).to_dict()
for r in res['matches']:
# skip example issue
if 'example_issue_' in r["id"]:
continue
try:
issue_number = int(r["id"].split('.')[0].split('_')[-1])
except:
get_logger().debug(f"Failed to parse issue number from {r['id']}")
continue
try:
issue_number = int(r["id"].split('.')[0].split('_')[-1])
except:
get_logger().debug(f"Failed to parse issue number from {r['id']}")
continue
if original_issue_number == issue_number:
continue
if issue_number not in relevant_issues_number_list:
relevant_issues_number_list.append(issue_number)
if 'comment' in r["id"]:
relevant_comment_number_list.append(int(r["id"].split('.')[1].split('_')[-1]))
else:
relevant_comment_number_list.append(-1)
score_list.append(str("{:.2f}".format(r['score'])))
get_logger().info('Done')
if original_issue_number == issue_number:
continue
if issue_number not in relevant_issues_number_list:
relevant_issues_number_list.append(issue_number)
if 'comment' in r["id"]:
relevant_comment_number_list.append(int(r["id"].split('.')[1].split('_')[-1]))
else:
relevant_comment_number_list.append(-1)
score_list.append(str("{:.2f}".format(r['score'])))
get_logger().info('Done')
elif get_settings().pr_similar_issue.vectordb == "lancedb":
res = self.table.search(embeds[0]).where(f"metadata.repo='{self.repo_name_for_index}'", prefilter=True).to_list()
for r in res:
# skip example issue
if 'example_issue_' in r["id"]:
continue
try:
issue_number = int(r["id"].split('.')[0].split('_')[-1])
except:
get_logger().debug(f"Failed to parse issue number from {r['id']}")
continue
if original_issue_number == issue_number:
continue
if issue_number not in relevant_issues_number_list:
relevant_issues_number_list.append(issue_number)
if 'comment' in r["id"]:
relevant_comment_number_list.append(int(r["id"].split('.')[1].split('_')[-1]))
else:
relevant_comment_number_list.append(-1)
score_list.append(str("{:.2f}".format(1-r['_distance'])))
get_logger().info('Done')
get_logger().info('Publishing response...')
similar_issues_str = "### Similar Issues\n___\n\n"
for i, issue_number_similar in enumerate(relevant_issues_number_list):
issue = self.git_provider.repo_obj.get_issue(issue_number_similar)
title = issue.title
@ -266,6 +361,96 @@ class PRSimilarIssue:
time.sleep(5) # wait for pinecone to finalize upserting before querying
get_logger().info('Done')
def _update_table_with_issues(self, issues_list, repo_name_for_index, ingest=False):
get_logger().info('Processing issues...')
corpus = Corpus()
example_issue_record = Record(
id=f"example_issue_{repo_name_for_index}",
text="example_issue",
metadata=Metadata(repo=repo_name_for_index)
)
corpus.append(example_issue_record)
counter = 0
for issue in issues_list:
if issue.pull_request:
continue
counter += 1
if counter % 100 == 0:
get_logger().info(f"Scanned {counter} issues")
if counter >= self.max_issues_to_scan:
get_logger().info(f"Scanned {self.max_issues_to_scan} issues, stopping")
break
issue_str, comments, number = self._process_issue(issue)
issue_key = f"issue_{number}"
username = issue.user.login
created_at = str(issue.created_at)
if len(issue_str) < 8000 or \
self.token_handler.count_tokens(issue_str) < get_max_tokens(MODEL): # fast reject first
issue_record = Record(
id=issue_key + "." + "issue",
text=issue_str,
metadata=Metadata(repo=repo_name_for_index,
username=username,
created_at=created_at,
level=IssueLevel.ISSUE)
)
corpus.append(issue_record)
if comments:
for j, comment in enumerate(comments):
comment_body = comment.body
num_words_comment = len(comment_body.split())
if num_words_comment < 10 or not isinstance(comment_body, str):
continue
if len(comment_body) < 8000 or \
self.token_handler.count_tokens(comment_body) < MAX_TOKENS[MODEL]:
comment_record = Record(
id=issue_key + ".comment_" + str(j + 1),
text=comment_body,
metadata=Metadata(repo=repo_name_for_index,
username=username, # use issue username for all comments
created_at=created_at,
level=IssueLevel.COMMENT)
)
corpus.append(comment_record)
df = pd.DataFrame(corpus.dict()["documents"])
get_logger().info('Done')
get_logger().info('Embedding...')
openai.api_key = get_settings().openai.key
list_to_encode = list(df["text"].values)
try:
res = openai.Embedding.create(input=list_to_encode, engine=MODEL)
embeds = [record['embedding'] for record in res['data']]
except:
embeds = []
get_logger().error('Failed to embed entire list, embedding one by one...')
for i, text in enumerate(list_to_encode):
try:
res = openai.Embedding.create(input=[text], engine=MODEL)
embeds.append(res['data'][0]['embedding'])
except:
embeds.append([0] * 1536)
df["vector"] = embeds
get_logger().info('Done')
if not ingest:
get_logger().info('Creating table from scratch...')
self.table = self.db.create_table(self.index_name, data=df, mode="overwrite")
time.sleep(15) # wait for pinecone to finalize indexing before querying
else:
get_logger().info('Ingesting in Table...')
if self.index_name not in self.db.table_names():
self.table.add(df)
else:
get_logger().info(f"Table {self.index_name} doesn't exists!")
time.sleep(5) # wait for pinecone to finalize upserting before querying
get_logger().info('Done')
class IssueLevel(str, Enum):
ISSUE = "issue"

View File

@ -14,6 +14,7 @@ msrest==0.7.1
openai==0.27.8
pinecone-client
pinecone-datasets @ git+https://github.com/mrT23/pinecone-datasets.git@main
lancedb==0.3.4
pytest==7.4.0
PyGithub==1.59.*
PyYAML==6.0.1