Merge remote-tracking branch 'origin/main'

This commit is contained in:
mrT23
2024-07-31 13:32:51 +03:00
10 changed files with 232 additions and 169 deletions

View File

@ -10,7 +10,7 @@
</picture> </picture>
<br/> <br/>
CodiumAI PR-Agent aims to help efficiently review and handle pull requests, by providing AI feedbacks and suggestions CodiumAI PR-Agent aims to help efficiently review and handle pull requests, by providing AI feedback and suggestions
</div> </div>
[![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://github.com/Codium-ai/pr-agent/blob/main/LICENSE) [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://github.com/Codium-ai/pr-agent/blob/main/LICENSE)
@ -18,6 +18,7 @@ CodiumAI PR-Agent aims to help efficiently review and handle pull requests, by p
[![Static Badge](https://img.shields.io/badge/Code-Benchmark-blue)](https://pr-agent-docs.codium.ai/finetuning_benchmark/) [![Static Badge](https://img.shields.io/badge/Code-Benchmark-blue)](https://pr-agent-docs.codium.ai/finetuning_benchmark/)
[![Discord](https://badgen.net/badge/icon/discord?icon=discord&label&color=purple)](https://discord.com/channels/1057273017547378788/1126104260430528613) [![Discord](https://badgen.net/badge/icon/discord?icon=discord&label&color=purple)](https://discord.com/channels/1057273017547378788/1126104260430528613)
[![Twitter](https://img.shields.io/twitter/follow/codiumai)](https://twitter.com/codiumai) [![Twitter](https://img.shields.io/twitter/follow/codiumai)](https://twitter.com/codiumai)
[![Cheat Sheet](https://img.shields.io/badge/Cheat-Sheet-red)](https://www.codium.ai/images/pr_agent/cheat_sheet.pdf)
<a href="https://github.com/Codium-ai/pr-agent/commits/main"> <a href="https://github.com/Codium-ai/pr-agent/commits/main">
<img alt="GitHub" src="https://img.shields.io/github/last-commit/Codium-ai/pr-agent/main?style=for-the-badge" height="20"> <img alt="GitHub" src="https://img.shields.io/github/last-commit/Codium-ai/pr-agent/main?style=for-the-badge" height="20">
</a> </a>
@ -42,6 +43,12 @@ CodiumAI PR-Agent aims to help efficiently review and handle pull requests, by p
## News and Updates ## News and Updates
### July 28, 2024
(1) improved support for bitbucket server - [auto commands](https://github.com/Codium-ai/pr-agent/pull/1059) and [direct links](https://github.com/Codium-ai/pr-agent/pull/1061)
(2) custom models are now [supported](https://pr-agent-docs.codium.ai/usage-guide/changing_a_model/#custom-models)
### July 6, 2024 ### July 6, 2024
v0.23 has been released. See full log changes [here](https://github.com/Codium-ai/pr-agent/releases/tag/v0.23). v0.23 has been released. See full log changes [here](https://github.com/Codium-ai/pr-agent/releases/tag/v0.23).

View File

@ -47,165 +47,6 @@ However, for very large PRs, or in case you want to emphasize quality over speed
which divides the PR to chunks, and processes each chunk separately. With this mode, regardless of the model, no compression will be done (but for large PRs, multiple model calls may occur) which divides the PR to chunks, and processes each chunk separately. With this mode, regardless of the model, no compression will be done (but for large PRs, multiple model calls may occur)
## Changing a model
See [here](https://github.com/Codium-ai/pr-agent/blob/main/pr_agent/algo/__init__.py) for the list of available models.
To use a different model than the default (GPT-4), you need to edit [configuration file](https://github.com/Codium-ai/pr-agent/blob/main/pr_agent/settings/configuration.toml#L2).
For models and environments not from OPENAI, you might need to provide additional keys and other parameters. See below for instructions.
### Azure
To use Azure, set in your `.secrets.toml` (working from CLI), or in the GitHub `Settings > Secrets and variables` (working from GitHub App or GitHub Action):
```
[openai]
key = "" # your azure api key
api_type = "azure"
api_version = '2023-05-15' # Check Azure documentation for the current API version
api_base = "" # The base URL for your Azure OpenAI resource. e.g. "https://<your resource name>.openai.azure.com"
deployment_id = "" # The deployment name you chose when you deployed the engine
```
and set in your configuration file:
```
[config]
model="" # the OpenAI model you've deployed on Azure (e.g. gpt-3.5-turbo)
```
### Hugging Face
**Local**
You can run Hugging Face models locally through either [VLLM](https://docs.litellm.ai/docs/providers/vllm) or [Ollama](https://docs.litellm.ai/docs/providers/ollama)
E.g. to use a new Hugging Face model locally via Ollama, set:
```
[__init__.py]
MAX_TOKENS = {
"model-name-on-ollama": <max_tokens>
}
e.g.
MAX_TOKENS={
...,
"ollama/llama2": 4096
}
[config] # in configuration.toml
model = "ollama/llama2"
model_turbo = "ollama/llama2"
[ollama] # in .secrets.toml
api_base = ... # the base url for your Hugging Face inference endpoint
# e.g. if running Ollama locally, you may use:
api_base = "http://localhost:11434/"
```
### Inference Endpoints
To use a new model with Hugging Face Inference Endpoints, for example, set:
```
[__init__.py]
MAX_TOKENS = {
"model-name-on-huggingface": <max_tokens>
}
e.g.
MAX_TOKENS={
...,
"meta-llama/Llama-2-7b-chat-hf": 4096
}
[config] # in configuration.toml
model = "huggingface/meta-llama/Llama-2-7b-chat-hf"
model_turbo = "huggingface/meta-llama/Llama-2-7b-chat-hf"
[huggingface] # in .secrets.toml
key = ... # your Hugging Face api key
api_base = ... # the base url for your Hugging Face inference endpoint
```
(you can obtain a Llama2 key from [here](https://replicate.com/replicate/llama-2-70b-chat/api))
### Replicate
To use Llama2 model with Replicate, for example, set:
```
[config] # in configuration.toml
model = "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"
model_turbo = "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"
[replicate] # in .secrets.toml
key = ...
```
(you can obtain a Llama2 key from [here](https://replicate.com/replicate/llama-2-70b-chat/api))
Also, review the [AiHandler](https://github.com/Codium-ai/pr-agent/blob/main/pr_agent/algo/ai_handler.py) file for instructions on how to set keys for other models.
### Groq
To use Llama3 model with Groq, for example, set:
```
[config] # in configuration.toml
model = "llama3-70b-8192"
model_turbo = "llama3-70b-8192"
fallback_models = ["groq/llama3-70b-8192"]
[groq] # in .secrets.toml
key = ... # your Groq api key
```
(you can obtain a Groq key from [here](https://console.groq.com/keys))
### Vertex AI
To use Google's Vertex AI platform and its associated models (chat-bison/codechat-bison) set:
```
[config] # in configuration.toml
model = "vertex_ai/codechat-bison"
model_turbo = "vertex_ai/codechat-bison"
fallback_models="vertex_ai/codechat-bison"
[vertexai] # in .secrets.toml
vertex_project = "my-google-cloud-project"
vertex_location = ""
```
Your [application default credentials](https://cloud.google.com/docs/authentication/application-default-credentials) will be used for authentication so there is no need to set explicit credentials in most environments.
If you do want to set explicit credentials then you can use the `GOOGLE_APPLICATION_CREDENTIALS` environment variable set to a path to a json credentials file.
### Anthropic
To use Anthropic models, set the relevant models in the configuration section of the configuration file:
```
[config]
model="anthropic/claude-3-opus-20240229"
model_turbo="anthropic/claude-3-opus-20240229"
fallback_models=["anthropic/claude-3-opus-20240229"]
```
And also set the api key in the .secrets.toml file:
```
[anthropic]
KEY = "..."
```
### Amazon Bedrock
To use Amazon Bedrock and its foundational models, add the below configuration:
```
[config] # in configuration.toml
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0"
model_turbo="bedrock/anthropic.claude-3-sonnet-20240229-v1:0"
fallback_models=["bedrock/anthropic.claude-v2:1"]
```
Note that you have to add access to foundational models before using them. Please refer to [this document](https://docs.aws.amazon.com/bedrock/latest/userguide/setting-up.html) for more details.
If you are using the claude-3 model, please configure the following settings as there are parameters incompatible with claude-3.
```
[litellm]
drop_params = true
```
AWS session is automatically authenticated from your environment, but you can also explicitly set `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY` and `AWS_REGION_NAME` environment variables. Please refer to [this document](https://litellm.vercel.app/docs/providers/bedrock) for more details.
## Patch Extra Lines ## Patch Extra Lines

View File

@ -0,0 +1,189 @@
## Changing a model
See [here](https://github.com/Codium-ai/pr-agent/blob/main/pr_agent/algo/__init__.py) for a list of available models.
To use a different model than the default (GPT-4), you need to edit in the [configuration file](https://github.com/Codium-ai/pr-agent/blob/main/pr_agent/settings/configuration.toml#L2) the fields:
```
[config]
model = "..."
model_turbo = "..."
fallback_models = ["..."]
```
For models and environments not from OpenAI, you might need to provide additional keys and other parameters.
You can give parameters via a configuration file (see below for instructions), or from environment variables. See [litellm documentation](https://litellm.vercel.app/docs/proxy/quick_start#supported-llms) for the environment variables relevant per model.
### Azure
To use Azure, set in your `.secrets.toml` (working from CLI), or in the GitHub `Settings > Secrets and variables` (working from GitHub App or GitHub Action):
```
[openai]
key = "" # your azure api key
api_type = "azure"
api_version = '2023-05-15' # Check Azure documentation for the current API version
api_base = "" # The base URL for your Azure OpenAI resource. e.g. "https://<your resource name>.openai.azure.com"
deployment_id = "" # The deployment name you chose when you deployed the engine
```
and set in your configuration file:
```
[config]
model="" # the OpenAI model you've deployed on Azure (e.g. gpt-3.5-turbo)
model_turbo="" # the OpenAI model you've deployed on Azure (e.g. gpt-3.5-turbo)
fallback_models=["..."] # the OpenAI model you've deployed on Azure (e.g. gpt-3.5-turbo)
```
### Hugging Face
**Local**
You can run Hugging Face models locally through either [VLLM](https://docs.litellm.ai/docs/providers/vllm) or [Ollama](https://docs.litellm.ai/docs/providers/ollama)
E.g. to use a new Hugging Face model locally via Ollama, set:
```
[__init__.py]
MAX_TOKENS = {
"model-name-on-ollama": <max_tokens>
}
e.g.
MAX_TOKENS={
...,
"ollama/llama2": 4096
}
[config] # in configuration.toml
model = "ollama/llama2"
model_turbo = "ollama/llama2"
fallback_models=["ollama/llama2"]
[ollama] # in .secrets.toml
api_base = ... # the base url for your Hugging Face inference endpoint
# e.g. if running Ollama locally, you may use:
api_base = "http://localhost:11434/"
```
### Inference Endpoints
To use a new model with Hugging Face Inference Endpoints, for example, set:
```
[__init__.py]
MAX_TOKENS = {
"model-name-on-huggingface": <max_tokens>
}
e.g.
MAX_TOKENS={
...,
"meta-llama/Llama-2-7b-chat-hf": 4096
}
[config] # in configuration.toml
model = "huggingface/meta-llama/Llama-2-7b-chat-hf"
model_turbo = "huggingface/meta-llama/Llama-2-7b-chat-hf"
fallback_models=["huggingface/meta-llama/Llama-2-7b-chat-hf"]
[huggingface] # in .secrets.toml
key = ... # your Hugging Face api key
api_base = ... # the base url for your Hugging Face inference endpoint
```
(you can obtain a Llama2 key from [here](https://replicate.com/replicate/llama-2-70b-chat/api))
### Replicate
To use Llama2 model with Replicate, for example, set:
```
[config] # in configuration.toml
model = "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"
model_turbo = "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"
fallback_models=["replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"]
[replicate] # in .secrets.toml
key = ...
```
(you can obtain a Llama2 key from [here](https://replicate.com/replicate/llama-2-70b-chat/api))
Also, review the [AiHandler](https://github.com/Codium-ai/pr-agent/blob/main/pr_agent/algo/ai_handler.py) file for instructions on how to set keys for other models.
### Groq
To use Llama3 model with Groq, for example, set:
```
[config] # in configuration.toml
model = "llama3-70b-8192"
model_turbo = "llama3-70b-8192"
fallback_models = ["groq/llama3-70b-8192"]
[groq] # in .secrets.toml
key = ... # your Groq api key
```
(you can obtain a Groq key from [here](https://console.groq.com/keys))
### Vertex AI
To use Google's Vertex AI platform and its associated models (chat-bison/codechat-bison) set:
```
[config] # in configuration.toml
model = "vertex_ai/codechat-bison"
model_turbo = "vertex_ai/codechat-bison"
fallback_models="vertex_ai/codechat-bison"
[vertexai] # in .secrets.toml
vertex_project = "my-google-cloud-project"
vertex_location = ""
```
Your [application default credentials](https://cloud.google.com/docs/authentication/application-default-credentials) will be used for authentication so there is no need to set explicit credentials in most environments.
If you do want to set explicit credentials, then you can use the `GOOGLE_APPLICATION_CREDENTIALS` environment variable set to a path to a json credentials file.
### Anthropic
To use Anthropic models, set the relevant models in the configuration section of the configuration file:
```
[config]
model="anthropic/claude-3-opus-20240229"
model_turbo="anthropic/claude-3-opus-20240229"
fallback_models=["anthropic/claude-3-opus-20240229"]
```
And also set the api key in the .secrets.toml file:
```
[anthropic]
KEY = "..."
```
### Amazon Bedrock
To use Amazon Bedrock and its foundational models, add the below configuration:
```
[config] # in configuration.toml
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0"
model_turbo="bedrock/anthropic.claude-3-sonnet-20240229-v1:0"
fallback_models=["bedrock/anthropic.claude-v2:1"]
```
Note that you have to add access to foundational models before using them. Please refer to [this document](https://docs.aws.amazon.com/bedrock/latest/userguide/setting-up.html) for more details.
If you are using the claude-3 model, please configure the following settings as there are parameters incompatible with claude-3.
```
[litellm]
drop_params = true
```
AWS session is automatically authenticated from your environment, but you can also explicitly set `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY` and `AWS_REGION_NAME` environment variables. Please refer to [this document](https://litellm.vercel.app/docs/providers/bedrock) for more details.
### Custom models
If the relevant model doesn't appear [here](https://github.com/Codium-ai/pr-agent/blob/main/pr_agent/algo/__init__.py), you can still use it as a custom model:
(1) Set the model name in the configuration file:
```
[config]
model="custom_model_name"
model_turbo="custom_model_name"
fallback_models=["custom_model_name"]
```
(2) Set the maximal tokens for the model:
```
[config]
custom_model_max_tokens= ...
```
(3) Go to [litellm documentation](https://litellm.vercel.app/docs/proxy/quick_start#supported-llms), find the model you want to use, and set the relevant environment variables.

View File

@ -26,15 +26,15 @@ The advantage of this method is that it allows to set configurations without nee
![wiki_configuration](https://codium.ai/images/pr_agent/wiki_configuration.png){width=512} ![wiki_configuration](https://codium.ai/images/pr_agent/wiki_configuration.png){width=512}
Click [here](https://codium.ai/images/pr_agent/wiki_configuration_pr_agent.mp4) to see a short instructional video. We recommend surrounding the configuration content with triple-quotes, to allow better presentation when displayed in the wiki as markdown. Click [here](https://codium.ai/images/pr_agent/wiki_configuration_pr_agent.mp4) to see a short instructional video. We recommend surrounding the configuration content with triple-quotes (or \`\`\`toml), to allow better presentation when displayed in the wiki as markdown.
An example content: An example content:
``` ```toml
[pr_description] [pr_description]
generate_ai_title=true generate_ai_title=true
``` ```
PR-Agent will know to remove the triple-quotes when reading the configuration content. PR-Agent will know to remove the surrounding quotes when reading the configuration content.
## Local configuration file ## Local configuration file

View File

@ -15,6 +15,7 @@ It includes information on how to adjust PR-Agent configurations, define which t
- [BitBucket App](./automations_and_usage.md#bitbucket-app) - [BitBucket App](./automations_and_usage.md#bitbucket-app)
- [Azure DevOps Provider](./automations_and_usage.md#azure-devops-provider) - [Azure DevOps Provider](./automations_and_usage.md#azure-devops-provider)
- [Managing Mail Notifications](./mail_notifications.md) - [Managing Mail Notifications](./mail_notifications.md)
- [Changing a Model](./changing_a_model.md)
- [Additional Configurations Walkthrough](./additional_configurations.md) - [Additional Configurations Walkthrough](./additional_configurations.md)
- [Ignoring files from analysis](./additional_configurations.md#ignoring-files-from-analysis) - [Ignoring files from analysis](./additional_configurations.md#ignoring-files-from-analysis)
- [Extra instructions](./additional_configurations.md#extra-instructions) - [Extra instructions](./additional_configurations.md#extra-instructions)

View File

@ -21,7 +21,9 @@ nav:
- Configuration File: 'usage-guide/configuration_options.md' - Configuration File: 'usage-guide/configuration_options.md'
- Usage and Automation: 'usage-guide/automations_and_usage.md' - Usage and Automation: 'usage-guide/automations_and_usage.md'
- Managing Mail Notifications: 'usage-guide/mail_notifications.md' - Managing Mail Notifications: 'usage-guide/mail_notifications.md'
- Changing a Model: 'usage-guide/changing_a_model.md'
- Additional Configurations: 'usage-guide/additional_configurations.md' - Additional Configurations: 'usage-guide/additional_configurations.md'
- 💎 PR-Agent Pro Models: 'usage-guide/PR_agent_pro_models'
- Tools: - Tools:
- 'tools/index.md' - 'tools/index.md'
- Describe: 'tools/describe.md' - Describe: 'tools/describe.md'

View File

@ -52,4 +52,10 @@ MAX_TOKENS = {
'groq/llama-3.1-70b-versatile': 131072, 'groq/llama-3.1-70b-versatile': 131072,
'groq/llama-3.1-405b-reasoning': 131072, 'groq/llama-3.1-405b-reasoning': 131072,
'ollama/llama3': 4096, 'ollama/llama3': 4096,
'watsonx/meta-llama/llama-3-8b-instruct': 4096,
"watsonx/meta-llama/llama-3-70b-instruct": 4096,
"watsonx/meta-llama/llama-3-405b-instruct": 16384,
"watsonx/ibm/granite-13b-chat-v2": 8191,
"watsonx/ibm/granite-34b-code-instruct": 8191,
"watsonx/mistralai/mistral-large": 32768,
} }

View File

@ -557,7 +557,7 @@ def _fix_key_value(key: str, value: str):
def load_yaml(response_text: str, keys_fix_yaml: List[str] = [], first_key="", last_key="") -> dict: def load_yaml(response_text: str, keys_fix_yaml: List[str] = [], first_key="", last_key="") -> dict:
response_text = response_text.removeprefix('```yaml').rstrip('`') response_text = response_text.strip('\n').removeprefix('```yaml').rstrip('`')
try: try:
data = yaml.safe_load(response_text) data = yaml.safe_load(response_text)
except Exception as e: except Exception as e:
@ -693,15 +693,25 @@ def get_user_labels(current_labels: List[str] = None):
def get_max_tokens(model): def get_max_tokens(model):
"""
Get the maximum number of tokens allowed for a model.
logic:
(1) If the model is in './pr_agent/algo/__init__.py', use the value from there.
(2) else, the user needs to define explicitly 'config.custom_model_max_tokens'
For both cases, we further limit the number of tokens to 'config.max_model_tokens' if it is set.
This aims to improve the algorithmic quality, as the AI model degrades in performance when the input is too long.
"""
settings = get_settings() settings = get_settings()
if model in MAX_TOKENS: if model in MAX_TOKENS:
max_tokens_model = MAX_TOKENS[model] max_tokens_model = MAX_TOKENS[model]
elif settings.config.custom_model_max_tokens > 0:
max_tokens_model = settings.config.custom_model_max_tokens
else: else:
raise Exception(f"MAX_TOKENS must be set for model {model} in ./pr_agent/algo/__init__.py") raise Exception(f"Ensure {model} is defined in MAX_TOKENS in ./pr_agent/algo/__init__.py or set a positive value for it in config.custom_model_max_tokens")
if settings.config.max_model_tokens: if settings.config.max_model_tokens and settings.config.max_model_tokens > 0:
max_tokens_model = min(settings.config.max_model_tokens, max_tokens_model) max_tokens_model = min(settings.config.max_model_tokens, max_tokens_model)
# get_logger().debug(f"limiting max tokens to {max_tokens_model}")
return max_tokens_model return max_tokens_model

View File

@ -18,6 +18,8 @@ ai_timeout=120 # 2minutes
max_description_tokens = 500 max_description_tokens = 500
max_commits_tokens = 500 max_commits_tokens = 500
max_model_tokens = 32000 # Limits the maximum number of tokens that can be used by any model, regardless of the model's default capabilities. max_model_tokens = 32000 # Limits the maximum number of tokens that can be used by any model, regardless of the model's default capabilities.
custom_model_max_tokens=-1 # for models not in the default list
#
patch_extra_lines = 1 patch_extra_lines = 1
secret_provider="" secret_provider=""
cli_mode=false cli_mode=false
@ -251,6 +253,11 @@ pr_commands = [
# URL to the BitBucket Server instance # URL to the BitBucket Server instance
# url = "https://git.bitbucket.com" # url = "https://git.bitbucket.com"
url = "" url = ""
pr_commands = [
"/describe",
"/review --pr_reviewer.num_code_suggestions=0",
"/improve --pr_code_suggestions.commitable_code_suggestions=true --pr_code_suggestions.suggestions_score_threshold=7",
]
[litellm] [litellm]
# use_client = false # use_client = false

View File

@ -100,8 +100,8 @@ class PRCodeSuggestions:
data = {"code_suggestions": []} data = {"code_suggestions": []}
if data is None or 'code_suggestions' not in data or not data['code_suggestions']: if data is None or 'code_suggestions' not in data or not data['code_suggestions']:
get_logger().error('No code suggestions found for PR.') get_logger().error('No code suggestions found for the PR.')
pr_body = "## PR Code Suggestions ✨\n\nNo code suggestions found for PR." pr_body = "## PR Code Suggestions ✨\n\nNo code suggestions found for the PR."
get_logger().debug(f"PR output", artifact=pr_body) get_logger().debug(f"PR output", artifact=pr_body)
if self.progress_response: if self.progress_response:
self.git_provider.edit_comment(self.progress_response, body=pr_body) self.git_provider.edit_comment(self.progress_response, body=pr_body)