mirror of
https://github.com/qodo-ai/pr-agent.git
synced 2025-07-13 01:00:39 +08:00
Refactor logging system to use custom logger across the codebase
This commit is contained in:
@ -1,18 +1,17 @@
|
||||
import copy
|
||||
import json
|
||||
import logging
|
||||
from enum import Enum
|
||||
from typing import List, Tuple
|
||||
import pinecone
|
||||
from typing import List
|
||||
|
||||
import openai
|
||||
import pandas as pd
|
||||
import pinecone
|
||||
from pinecone_datasets import Dataset, DatasetMetadata
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from pr_agent.algo import MAX_TOKENS
|
||||
from pr_agent.algo.token_handler import TokenHandler
|
||||
from pr_agent.config_loader import get_settings
|
||||
from pr_agent.git_providers import get_git_provider
|
||||
from pinecone_datasets import Dataset, DatasetMetadata
|
||||
from pr_agent.log import get_logger
|
||||
|
||||
MODEL = "text-embedding-ada-002"
|
||||
|
||||
@ -62,11 +61,11 @@ class PRSimilarIssue:
|
||||
upsert = False
|
||||
|
||||
if run_from_scratch or upsert: # index the entire repo
|
||||
logging.info('Indexing the entire repo...')
|
||||
get_logger().info('Indexing the entire repo...')
|
||||
|
||||
logging.info('Getting issues...')
|
||||
get_logger().info('Getting issues...')
|
||||
issues = list(repo_obj.get_issues(state='all'))
|
||||
logging.info('Done')
|
||||
get_logger().info('Done')
|
||||
self._update_index_with_issues(issues, repo_name_for_index, upsert=upsert)
|
||||
else: # update index if needed
|
||||
pinecone_index = pinecone.Index(index_name=index_name)
|
||||
@ -92,20 +91,20 @@ class PRSimilarIssue:
|
||||
break
|
||||
|
||||
if issues_to_update:
|
||||
logging.info(f'Updating index with {counter} new issues...')
|
||||
get_logger().info(f'Updating index with {counter} new issues...')
|
||||
self._update_index_with_issues(issues_to_update, repo_name_for_index, upsert=True)
|
||||
else:
|
||||
logging.info('No new issues to update')
|
||||
get_logger().info('No new issues to update')
|
||||
|
||||
async def run(self):
|
||||
logging.info('Getting issue...')
|
||||
get_logger().info('Getting issue...')
|
||||
repo_name, original_issue_number = self.git_provider._parse_issue_url(self.issue_url.split('=')[-1])
|
||||
issue_main = self.git_provider.repo_obj.get_issue(original_issue_number)
|
||||
issue_str, comments, number = self._process_issue(issue_main)
|
||||
openai.api_key = get_settings().openai.key
|
||||
logging.info('Done')
|
||||
get_logger().info('Done')
|
||||
|
||||
logging.info('Querying...')
|
||||
get_logger().info('Querying...')
|
||||
res = openai.Embedding.create(input=[issue_str], engine=MODEL)
|
||||
embeds = [record['embedding'] for record in res['data']]
|
||||
pinecone_index = pinecone.Index(index_name=self.index_name)
|
||||
@ -127,9 +126,9 @@ class PRSimilarIssue:
|
||||
else:
|
||||
relevant_comment_number_list.append(-1)
|
||||
score_list.append(str("{:.2f}".format(r['score'])))
|
||||
logging.info('Done')
|
||||
get_logger().info('Done')
|
||||
|
||||
logging.info('Publishing response...')
|
||||
get_logger().info('Publishing response...')
|
||||
similar_issues_str = "### Similar Issues\n___\n\n"
|
||||
for i, issue_number_similar in enumerate(relevant_issues_number_list):
|
||||
issue = self.git_provider.repo_obj.get_issue(issue_number_similar)
|
||||
@ -140,8 +139,8 @@ class PRSimilarIssue:
|
||||
similar_issues_str += f"{i + 1}. **[{title}]({url})** (score={score_list[i]})\n\n"
|
||||
if get_settings().config.publish_output:
|
||||
response = issue_main.create_comment(similar_issues_str)
|
||||
logging.info(similar_issues_str)
|
||||
logging.info('Done')
|
||||
get_logger().info(similar_issues_str)
|
||||
get_logger().info('Done')
|
||||
|
||||
def _process_issue(self, issue):
|
||||
header = issue.title
|
||||
@ -155,7 +154,7 @@ class PRSimilarIssue:
|
||||
return issue_str, comments, number
|
||||
|
||||
def _update_index_with_issues(self, issues_list, repo_name_for_index, upsert=False):
|
||||
logging.info('Processing issues...')
|
||||
get_logger().info('Processing issues...')
|
||||
corpus = Corpus()
|
||||
example_issue_record = Record(
|
||||
id=f"example_issue_{repo_name_for_index}",
|
||||
@ -171,9 +170,9 @@ class PRSimilarIssue:
|
||||
|
||||
counter += 1
|
||||
if counter % 100 == 0:
|
||||
logging.info(f"Scanned {counter} issues")
|
||||
get_logger().info(f"Scanned {counter} issues")
|
||||
if counter >= self.max_issues_to_scan:
|
||||
logging.info(f"Scanned {self.max_issues_to_scan} issues, stopping")
|
||||
get_logger().info(f"Scanned {self.max_issues_to_scan} issues, stopping")
|
||||
break
|
||||
|
||||
issue_str, comments, number = self._process_issue(issue)
|
||||
@ -210,9 +209,9 @@ class PRSimilarIssue:
|
||||
)
|
||||
corpus.append(comment_record)
|
||||
df = pd.DataFrame(corpus.dict()["documents"])
|
||||
logging.info('Done')
|
||||
get_logger().info('Done')
|
||||
|
||||
logging.info('Embedding...')
|
||||
get_logger().info('Embedding...')
|
||||
openai.api_key = get_settings().openai.key
|
||||
list_to_encode = list(df["text"].values)
|
||||
try:
|
||||
@ -220,7 +219,7 @@ class PRSimilarIssue:
|
||||
embeds = [record['embedding'] for record in res['data']]
|
||||
except:
|
||||
embeds = []
|
||||
logging.error('Failed to embed entire list, embedding one by one...')
|
||||
get_logger().error('Failed to embed entire list, embedding one by one...')
|
||||
for i, text in enumerate(list_to_encode):
|
||||
try:
|
||||
res = openai.Embedding.create(input=[text], engine=MODEL)
|
||||
@ -231,21 +230,21 @@ class PRSimilarIssue:
|
||||
meta = DatasetMetadata.empty()
|
||||
meta.dense_model.dimension = len(embeds[0])
|
||||
ds = Dataset.from_pandas(df, meta)
|
||||
logging.info('Done')
|
||||
get_logger().info('Done')
|
||||
|
||||
api_key = get_settings().pinecone.api_key
|
||||
environment = get_settings().pinecone.environment
|
||||
if not upsert:
|
||||
logging.info('Creating index from scratch...')
|
||||
get_logger().info('Creating index from scratch...')
|
||||
ds.to_pinecone_index(self.index_name, api_key=api_key, environment=environment)
|
||||
else:
|
||||
logging.info('Upserting index...')
|
||||
get_logger().info('Upserting index...')
|
||||
namespace = ""
|
||||
batch_size: int = 100
|
||||
concurrency: int = 10
|
||||
pinecone.init(api_key=api_key, environment=environment)
|
||||
ds._upsert_to_index(self.index_name, namespace, batch_size, concurrency)
|
||||
logging.info('Done')
|
||||
get_logger().info('Done')
|
||||
|
||||
|
||||
class IssueLevel(str, Enum):
|
||||
|
Reference in New Issue
Block a user