Merge remote-tracking branch 'upstream/main' into abstract-BaseAiHandler

This commit is contained in:
Brian Pham
2023-12-09 16:47:13 +00:00
104 changed files with 3813 additions and 1068 deletions

View File

@ -0,0 +1,179 @@
import copy
import textwrap
from typing import Dict
from jinja2 import Environment, StrictUndefined
from pr_agent.algo.ai_handler import AiHandler
from pr_agent.algo.pr_processing import get_pr_diff, retry_with_fallback_models
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.algo.utils import load_yaml
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import get_git_provider
from pr_agent.git_providers.git_provider import get_main_pr_language
from pr_agent.log import get_logger
class PRAddDocs:
def __init__(self, pr_url: str, cli_mode=False, args: list = None):
self.git_provider = get_git_provider()(pr_url)
self.main_language = get_main_pr_language(
self.git_provider.get_languages(), self.git_provider.get_files()
)
self.ai_handler = AiHandler()
self.patches_diff = None
self.prediction = None
self.cli_mode = cli_mode
self.vars = {
"title": self.git_provider.pr.title,
"branch": self.git_provider.get_pr_branch(),
"description": self.git_provider.get_pr_description(),
"language": self.main_language,
"diff": "", # empty diff for initial calculation
"extra_instructions": get_settings().pr_add_docs.extra_instructions,
"commit_messages_str": self.git_provider.get_commit_messages(),
'docs_for_language': get_docs_for_language(self.main_language,
get_settings().pr_add_docs.docs_style),
}
self.token_handler = TokenHandler(self.git_provider.pr,
self.vars,
get_settings().pr_add_docs_prompt.system,
get_settings().pr_add_docs_prompt.user)
async def run(self):
try:
get_logger().info('Generating code Docs for PR...')
if get_settings().config.publish_output:
self.git_provider.publish_comment("Generating Documentation...", is_temporary=True)
get_logger().info('Preparing PR documentation...')
await retry_with_fallback_models(self._prepare_prediction)
data = self._prepare_pr_code_docs()
if (not data) or (not 'Code Documentation' in data):
get_logger().info('No code documentation found for PR.')
return
if get_settings().config.publish_output:
get_logger().info('Pushing PR documentation...')
self.git_provider.remove_initial_comment()
get_logger().info('Pushing inline code documentation...')
self.push_inline_docs(data)
except Exception as e:
get_logger().error(f"Failed to generate code documentation for PR, error: {e}")
async def _prepare_prediction(self, model: str):
get_logger().info('Getting PR diff...')
# Disable adding docs to scripts and other non-relevant text files
from pr_agent.algo.language_handler import bad_extensions
bad_extensions += get_settings().docs_blacklist_extensions.docs_blacklist
self.patches_diff = get_pr_diff(self.git_provider,
self.token_handler,
model,
add_line_numbers_to_hunks=True,
disable_extra_lines=False)
get_logger().info('Getting AI prediction...')
self.prediction = await self._get_prediction(model)
async def _get_prediction(self, model: str):
variables = copy.deepcopy(self.vars)
variables["diff"] = self.patches_diff # update diff
environment = Environment(undefined=StrictUndefined)
system_prompt = environment.from_string(get_settings().pr_add_docs_prompt.system).render(variables)
user_prompt = environment.from_string(get_settings().pr_add_docs_prompt.user).render(variables)
if get_settings().config.verbosity_level >= 2:
get_logger().info(f"\nSystem prompt:\n{system_prompt}")
get_logger().info(f"\nUser prompt:\n{user_prompt}")
response, finish_reason = await self.ai_handler.chat_completion(model=model, temperature=0.2,
system=system_prompt, user=user_prompt)
return response
def _prepare_pr_code_docs(self) -> Dict:
docs = self.prediction.strip()
data = load_yaml(docs)
if isinstance(data, list):
data = {'Code Documentation': data}
return data
def push_inline_docs(self, data):
docs = []
if not data['Code Documentation']:
return self.git_provider.publish_comment('No code documentation found to improve this PR.')
for d in data['Code Documentation']:
try:
if get_settings().config.verbosity_level >= 2:
get_logger().info(f"add_docs: {d}")
relevant_file = d['relevant file'].strip()
relevant_line = int(d['relevant line']) # absolute position
documentation = d['documentation']
doc_placement = d['doc placement'].strip()
if documentation:
new_code_snippet = self.dedent_code(relevant_file, relevant_line, documentation, doc_placement,
add_original_line=True)
body = f"**Suggestion:** Proposed documentation\n```suggestion\n" + new_code_snippet + "\n```"
docs.append({'body': body, 'relevant_file': relevant_file,
'relevant_lines_start': relevant_line,
'relevant_lines_end': relevant_line})
except Exception:
if get_settings().config.verbosity_level >= 2:
get_logger().info(f"Could not parse code docs: {d}")
is_successful = self.git_provider.publish_code_suggestions(docs)
if not is_successful:
get_logger().info("Failed to publish code docs, trying to publish each docs separately")
for doc_suggestion in docs:
self.git_provider.publish_code_suggestions([doc_suggestion])
def dedent_code(self, relevant_file, relevant_lines_start, new_code_snippet, doc_placement='after',
add_original_line=False):
try: # dedent code snippet
self.diff_files = self.git_provider.diff_files if self.git_provider.diff_files \
else self.git_provider.get_diff_files()
original_initial_line = None
for file in self.diff_files:
if file.filename.strip() == relevant_file:
original_initial_line = file.head_file.splitlines()[relevant_lines_start - 1]
break
if original_initial_line:
if doc_placement == 'after':
line = file.head_file.splitlines()[relevant_lines_start]
else:
line = original_initial_line
suggested_initial_line = new_code_snippet.splitlines()[0]
original_initial_spaces = len(line) - len(line.lstrip())
suggested_initial_spaces = len(suggested_initial_line) - len(suggested_initial_line.lstrip())
delta_spaces = original_initial_spaces - suggested_initial_spaces
if delta_spaces > 0:
new_code_snippet = textwrap.indent(new_code_snippet, delta_spaces * " ").rstrip('\n')
if add_original_line:
if doc_placement == 'after':
new_code_snippet = original_initial_line + "\n" + new_code_snippet
else:
new_code_snippet = new_code_snippet.rstrip() + "\n" + original_initial_line
except Exception as e:
if get_settings().config.verbosity_level >= 2:
get_logger().info(f"Could not dedent code snippet for file {relevant_file}, error: {e}")
return new_code_snippet
def get_docs_for_language(language, style):
language = language.lower()
if language == 'java':
return "Javadocs"
elif language in ['python', 'lisp', 'clojure']:
return f"Docstring ({style})"
elif language in ['javascript', 'typescript']:
return "JSdocs"
elif language == 'c++':
return "Doxygen"
else:
return "Docs"

View File

@ -1,16 +1,16 @@
import copy
import logging
import textwrap
from typing import List, Dict
from typing import Dict, List
from jinja2 import Environment, StrictUndefined
from pr_agent.algo.ai_handler import BaseAiHandler, AiHandler
from pr_agent.algo.pr_processing import get_pr_diff, retry_with_fallback_models, get_pr_multi_diffs
from pr_agent.algo.pr_processing import get_pr_diff, get_pr_multi_diffs, retry_with_fallback_models
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.algo.utils import load_yaml
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import BitbucketProvider, get_git_provider
from pr_agent.git_providers import get_git_provider
from pr_agent.git_providers.git_provider import get_main_pr_language
from pr_agent.log import get_logger
class PRCodeSuggestions:
@ -52,42 +52,46 @@ class PRCodeSuggestions:
async def run(self):
try:
logging.info('Generating code suggestions for PR...')
get_logger().info('Generating code suggestions for PR...')
if get_settings().config.publish_output:
self.git_provider.publish_comment("Preparing review...", is_temporary=True)
self.git_provider.publish_comment("Preparing suggestions...", is_temporary=True)
logging.info('Preparing PR review...')
get_logger().info('Preparing PR code suggestions...')
if not self.is_extended:
await retry_with_fallback_models(self._prepare_prediction)
data = self._prepare_pr_code_suggestions()
else:
data = await retry_with_fallback_models(self._prepare_prediction_extended)
if (not data) or (not 'Code suggestions' in data):
logging.info('No code suggestions found for PR.')
get_logger().info('No code suggestions found for PR.')
return
if (not self.is_extended and get_settings().pr_code_suggestions.rank_suggestions) or \
(self.is_extended and get_settings().pr_code_suggestions.rank_extended_suggestions):
logging.info('Ranking Suggestions...')
get_logger().info('Ranking Suggestions...')
data['Code suggestions'] = await self.rank_suggestions(data['Code suggestions'])
if get_settings().config.publish_output:
logging.info('Pushing PR review...')
get_logger().info('Pushing PR code suggestions...')
self.git_provider.remove_initial_comment()
logging.info('Pushing inline code suggestions...')
self.push_inline_code_suggestions(data)
if get_settings().pr_code_suggestions.summarize:
get_logger().info('Pushing summarize code suggestions...')
self.publish_summarizes_suggestions(data)
else:
get_logger().info('Pushing inline code suggestions...')
self.push_inline_code_suggestions(data)
except Exception as e:
logging.error(f"Failed to generate code suggestions for PR, error: {e}")
get_logger().error(f"Failed to generate code suggestions for PR, error: {e}")
async def _prepare_prediction(self, model: str):
logging.info('Getting PR diff...')
get_logger().info('Getting PR diff...')
self.patches_diff = get_pr_diff(self.git_provider,
self.token_handler,
model,
add_line_numbers_to_hunks=True,
disable_extra_lines=True)
logging.info('Getting AI prediction...')
get_logger().info('Getting AI prediction...')
self.prediction = await self._get_prediction(model)
async def _get_prediction(self, model: str):
@ -97,8 +101,8 @@ class PRCodeSuggestions:
system_prompt = environment.from_string(get_settings().pr_code_suggestions_prompt.system).render(variables)
user_prompt = environment.from_string(get_settings().pr_code_suggestions_prompt.user).render(variables)
if get_settings().config.verbosity_level >= 2:
logging.info(f"\nSystem prompt:\n{system_prompt}")
logging.info(f"\nUser prompt:\n{user_prompt}")
get_logger().info(f"\nSystem prompt:\n{system_prompt}")
get_logger().info(f"\nUser prompt:\n{user_prompt}")
response, finish_reason = await self.ai_handler.chat_completion(model=model, temperature=0.2,
system=system_prompt, user=user_prompt)
@ -115,12 +119,13 @@ class PRCodeSuggestions:
code_suggestions = []
if not data['Code suggestions']:
get_logger().info('No suggestions found to improve this PR.')
return self.git_provider.publish_comment('No suggestions found to improve this PR.')
for d in data['Code suggestions']:
try:
if get_settings().config.verbosity_level >= 2:
logging.info(f"suggestion: {d}")
get_logger().info(f"suggestion: {d}")
relevant_file = d['relevant file'].strip()
relevant_lines_start = int(d['relevant lines start']) # absolute position
relevant_lines_end = int(d['relevant lines end'])
@ -136,11 +141,11 @@ class PRCodeSuggestions:
'relevant_lines_end': relevant_lines_end})
except Exception:
if get_settings().config.verbosity_level >= 2:
logging.info(f"Could not parse suggestion: {d}")
get_logger().info(f"Could not parse suggestion: {d}")
is_successful = self.git_provider.publish_code_suggestions(code_suggestions)
if not is_successful:
logging.info("Failed to publish code suggestions, trying to publish each suggestion separately")
get_logger().info("Failed to publish code suggestions, trying to publish each suggestion separately")
for code_suggestion in code_suggestions:
self.git_provider.publish_code_suggestions([code_suggestion])
@ -162,19 +167,19 @@ class PRCodeSuggestions:
new_code_snippet = textwrap.indent(new_code_snippet, delta_spaces * " ").rstrip('\n')
except Exception as e:
if get_settings().config.verbosity_level >= 2:
logging.info(f"Could not dedent code snippet for file {relevant_file}, error: {e}")
get_logger().info(f"Could not dedent code snippet for file {relevant_file}, error: {e}")
return new_code_snippet
async def _prepare_prediction_extended(self, model: str) -> dict:
logging.info('Getting PR diff...')
get_logger().info('Getting PR diff...')
patches_diff_list = get_pr_multi_diffs(self.git_provider, self.token_handler, model,
max_calls=get_settings().pr_code_suggestions.max_number_of_calls)
logging.info('Getting multi AI predictions...')
get_logger().info('Getting multi AI predictions...')
prediction_list = []
for i, patches_diff in enumerate(patches_diff_list):
logging.info(f"Processing chunk {i + 1} of {len(patches_diff_list)}")
get_logger().info(f"Processing chunk {i + 1} of {len(patches_diff_list)}")
self.patches_diff = patches_diff
prediction = await self._get_prediction(model)
prediction_list.append(prediction)
@ -222,8 +227,8 @@ class PRCodeSuggestions:
variables)
user_prompt = environment.from_string(get_settings().pr_sort_code_suggestions_prompt.user).render(variables)
if get_settings().config.verbosity_level >= 2:
logging.info(f"\nSystem prompt:\n{system_prompt}")
logging.info(f"\nUser prompt:\n{user_prompt}")
get_logger().info(f"\nSystem prompt:\n{system_prompt}")
get_logger().info(f"\nUser prompt:\n{user_prompt}")
response, finish_reason = await self.ai_handler.chat_completion(model=model, system=system_prompt,
user=user_prompt)
@ -238,9 +243,46 @@ class PRCodeSuggestions:
data_sorted = data_sorted[:new_len]
except Exception as e:
if get_settings().config.verbosity_level >= 1:
logging.info(f"Could not sort suggestions, error: {e}")
get_logger().info(f"Could not sort suggestions, error: {e}")
data_sorted = suggestion_list
return data_sorted
def publish_summarizes_suggestions(self, data: Dict):
try:
data_markdown = "## PR Code Suggestions\n\n"
language_extension_map_org = get_settings().language_extension_map_org
extension_to_language = {}
for language, extensions in language_extension_map_org.items():
for ext in extensions:
extension_to_language[ext] = language
for s in data['Code suggestions']:
try:
extension_s = s['relevant file'].rsplit('.')[-1]
code_snippet_link = self.git_provider.get_line_link(s['relevant file'], s['relevant lines start'],
s['relevant lines end'])
data_markdown += f"\n💡 Suggestion:\n\n**{s['suggestion content']}**\n\n"
if code_snippet_link:
data_markdown += f" File: [{s['relevant file']} ({s['relevant lines start']}-{s['relevant lines end']})]({code_snippet_link})\n\n"
else:
data_markdown += f"File: {s['relevant file']} ({s['relevant lines start']}-{s['relevant lines end']})\n\n"
if self.git_provider.is_supported("gfm_markdown"):
data_markdown += "<details> <summary> Example code:</summary>\n\n"
data_markdown += f"___\n\n"
language_name = "python"
if extension_s and (extension_s in extension_to_language):
language_name = extension_to_language[extension_s]
data_markdown += f"Existing code:\n```{language_name}\n{s['existing code']}\n```\n"
data_markdown += f"Improved code:\n```{language_name}\n{s['improved code']}\n```\n"
if self.git_provider.is_supported("gfm_markdown"):
data_markdown += "</details>\n"
data_markdown += "\n___\n\n"
except Exception as e:
get_logger().error(f"Could not parse suggestion: {s}, error: {e}")
self.git_provider.publish_comment(data_markdown)
except Exception as e:
get_logger().info(f"Failed to publish summarized code suggestions, error: {e}")

View File

@ -1,7 +1,6 @@
import logging
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import get_git_provider
from pr_agent.log import get_logger
class PRConfig:
@ -19,11 +18,11 @@ class PRConfig:
self.git_provider = get_git_provider()(pr_url)
async def run(self):
logging.info('Getting configuration settings...')
logging.info('Preparing configs...')
get_logger().info('Getting configuration settings...')
get_logger().info('Preparing configs...')
pr_comment = self._prepare_pr_configs()
if get_settings().config.publish_output:
logging.info('Pushing configs...')
get_logger().info('Pushing configs...')
self.git_provider.publish_comment(pr_comment)
self.git_provider.remove_initial_comment()
return ""
@ -44,5 +43,5 @@ class PRConfig:
comment_str += f"\n{header.lower()}.{key.lower()} = {repr(value) if isinstance(value, str) else value}"
comment_str += " "
if get_settings().config.verbosity_level >= 2:
logging.info(f"comment_str:\n{comment_str}")
get_logger().info(f"comment_str:\n{comment_str}")
return comment_str

View File

@ -1,7 +1,5 @@
import copy
import json
import re
import logging
from typing import List, Tuple
from jinja2 import Environment, StrictUndefined
@ -9,10 +7,11 @@ from jinja2 import Environment, StrictUndefined
from pr_agent.algo.ai_handler import BaseAiHandler, AiHandler
from pr_agent.algo.pr_processing import get_pr_diff, retry_with_fallback_models
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.algo.utils import load_yaml
from pr_agent.algo.utils import load_yaml, set_custom_labels, get_user_labels
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import get_git_provider
from pr_agent.git_providers.git_provider import get_main_pr_language
from pr_agent.log import get_logger
class PRDescription:
@ -31,6 +30,11 @@ class PRDescription:
)
self.pr_id = self.git_provider.get_pr_id()
if get_settings().pr_description.enable_semantic_files_types and not self.git_provider.is_supported(
"gfm_markdown"):
get_logger().debug(f"Disabling semantic files types for {self.pr_id}")
get_settings().pr_description.enable_semantic_files_types = False
# Initialize the AI handler
self.ai_handler = ai_handler
@ -41,8 +45,13 @@ class PRDescription:
"description": self.git_provider.get_pr_description(full=False),
"language": self.main_pr_language,
"diff": "", # empty diff for initial calculation
"use_bullet_points": get_settings().pr_description.use_bullet_points,
"extra_instructions": get_settings().pr_description.extra_instructions,
"commit_messages_str": self.git_provider.get_commit_messages()
"commit_messages_str": self.git_provider.get_commit_messages(),
"enable_custom_labels": get_settings().config.enable_custom_labels,
"custom_labels_class": "", # will be filled if necessary in 'set_custom_labels' function
"enable_file_walkthrough": get_settings().pr_description.enable_file_walkthrough,
"enable_semantic_files_types": get_settings().pr_description.enable_semantic_files_types,
}
self.user_description = self.git_provider.get_user_description()
@ -65,18 +74,21 @@ class PRDescription:
"""
try:
logging.info(f"Generating a PR description {self.pr_id}")
get_logger().info(f"Generating a PR description {self.pr_id}")
if get_settings().config.publish_output:
self.git_provider.publish_comment("Preparing PR description...", is_temporary=True)
await retry_with_fallback_models(self._prepare_prediction)
logging.info(f"Preparing answer {self.pr_id}")
get_logger().info(f"Preparing answer {self.pr_id}")
if self.prediction:
self._prepare_data()
else:
return None
if get_settings().pr_description.enable_semantic_files_types:
self._prepare_file_labels()
pr_labels = []
if get_settings().pr_description.publish_labels:
pr_labels = self._prepare_labels()
@ -88,19 +100,25 @@ class PRDescription:
full_markdown_description = f"## Title\n\n{pr_title}\n\n___\n{pr_body}"
if get_settings().config.publish_output:
logging.info(f"Pushing answer {self.pr_id}")
get_logger().info(f"Pushing answer {self.pr_id}")
if get_settings().pr_description.publish_description_as_comment:
self.git_provider.publish_comment(full_markdown_description)
else:
self.git_provider.publish_description(pr_title, pr_body)
if get_settings().pr_description.publish_labels and self.git_provider.is_supported("get_labels"):
current_labels = self.git_provider.get_labels()
if current_labels is None:
current_labels = []
self.git_provider.publish_labels(pr_labels + current_labels)
user_labels = get_user_labels(current_labels)
self.git_provider.publish_labels(pr_labels + user_labels)
if (get_settings().pr_description.final_update_message and
hasattr(self.git_provider, 'pr_url') and self.git_provider.pr_url):
latest_commit_url = self.git_provider.get_latest_commit_url()
if latest_commit_url:
self.git_provider.publish_comment(
f"**[PR Description]({self.git_provider.pr_url})** updated to latest commit ({latest_commit_url})")
self.git_provider.remove_initial_comment()
except Exception as e:
logging.error(f"Error generating PR description {self.pr_id}: {e}")
get_logger().error(f"Error generating PR description {self.pr_id}: {e}")
return ""
@ -121,9 +139,9 @@ class PRDescription:
if get_settings().pr_description.use_description_markers and 'pr_agent:' not in self.user_description:
return None
logging.info(f"Getting PR diff {self.pr_id}")
get_logger().info(f"Getting PR diff {self.pr_id}")
self.patches_diff = get_pr_diff(self.git_provider, self.token_handler, model)
logging.info(f"Getting AI prediction {self.pr_id}")
get_logger().info(f"Getting AI prediction {self.pr_id}")
self.prediction = await self._get_prediction(model)
async def _get_prediction(self, model: str) -> str:
@ -140,12 +158,13 @@ class PRDescription:
variables["diff"] = self.patches_diff # update diff
environment = Environment(undefined=StrictUndefined)
set_custom_labels(variables)
system_prompt = environment.from_string(get_settings().pr_description_prompt.system).render(variables)
user_prompt = environment.from_string(get_settings().pr_description_prompt.user).render(variables)
if get_settings().config.verbosity_level >= 2:
logging.info(f"\nSystem prompt:\n{system_prompt}")
logging.info(f"\nUser prompt:\n{user_prompt}")
get_logger().info(f"\nSystem prompt:\n{system_prompt}")
get_logger().info(f"\nUser prompt:\n{user_prompt}")
response, finish_reason = await self.ai_handler.chat_completion(
model=model,
@ -154,8 +173,10 @@ class PRDescription:
user=user_prompt
)
return response
if get_settings().config.verbosity_level >= 2:
get_logger().info(f"\nAI response:\n{response}")
return response
def _prepare_data(self):
# Load the AI prediction data into a dictionary
@ -169,16 +190,20 @@ class PRDescription:
pr_types = []
# If the 'PR Type' key is present in the dictionary, split its value by comma and assign it to 'pr_types'
if 'PR Type' in self.data:
if type(self.data['PR Type']) == list:
pr_types = self.data['PR Type']
elif type(self.data['PR Type']) == str:
pr_types = self.data['PR Type'].split(',')
if 'labels' in self.data:
if type(self.data['labels']) == list:
pr_types = self.data['labels']
elif type(self.data['labels']) == str:
pr_types = self.data['labels'].split(',')
elif 'type' in self.data:
if type(self.data['type']) == list:
pr_types = self.data['type']
elif type(self.data['type']) == str:
pr_types = self.data['type'].split(',')
return pr_types
def _prepare_pr_answer_with_markers(self) -> Tuple[str, str]:
logging.info(f"Using description marker replacements {self.pr_id}")
get_logger().info(f"Using description marker replacements {self.pr_id}")
title = self.vars["title"]
body = self.user_description
if get_settings().pr_description.include_generated_by_header:
@ -186,7 +211,12 @@ class PRDescription:
else:
ai_header = ""
ai_summary = self.data.get('PR Description')
ai_type = self.data.get('type')
if ai_type and not re.search(r'<!--\s*pr_agent:type\s*-->', body):
pr_type = f"{ai_header}{ai_type}"
body = body.replace('pr_agent:type', pr_type)
ai_summary = self.data.get('description')
if ai_summary and not re.search(r'<!--\s*pr_agent:summary\s*-->', body):
summary = f"{ai_header}{ai_summary}"
body = body.replace('pr_agent:summary', summary)
@ -215,12 +245,17 @@ class PRDescription:
# Iterate over the dictionary items and append the key and value to 'markdown_text' in a markdown format
markdown_text = ""
# Don't display 'PR Labels'
if 'labels' in self.data and self.git_provider.is_supported("get_labels"):
self.data.pop('labels')
if not get_settings().pr_description.enable_pr_type:
self.data.pop('type')
for key, value in self.data.items():
markdown_text += f"## {key}\n\n"
markdown_text += f"{value}\n\n"
# Remove the 'PR Title' key from the dictionary
ai_title = self.data.pop('PR Title', self.vars["title"])
ai_title = self.data.pop('title', self.vars["title"])
if get_settings().pr_description.keep_original_user_title:
# Assign the original PR title to the 'title' variable
title = self.vars["title"]
@ -232,26 +267,131 @@ class PRDescription:
# except for the items containing the word 'walkthrough'
pr_body = ""
for idx, (key, value) in enumerate(self.data.items()):
pr_body += f"## {key}:\n"
if key == 'pr_files':
value = self.file_label_dict
key_publish = "PR changes walkthrough"
else:
key_publish = key.rstrip(':').replace("_", " ").capitalize()
pr_body += f"## {key_publish}\n"
if 'walkthrough' in key.lower():
# for filename, description in value.items():
if self.git_provider.is_supported("gfm_markdown"):
pr_body += "<details> <summary>files:</summary>\n\n"
for file in value:
filename = file['filename'].replace("'", "`")
description = file['changes in file']
pr_body += f'`{filename}`: {description}\n'
description = file['changes_in_file']
pr_body += f'- `{filename}`: {description}\n'
if self.git_provider.is_supported("gfm_markdown"):
pr_body +="</details>\n"
pr_body += "</details>\n"
elif 'pr_files' in key.lower():
pr_body = self.process_pr_files_prediction(pr_body, value)
else:
# if the value is a list, join its items by comma
if type(value) == list:
if isinstance(value, list):
value = ', '.join(v for v in value)
pr_body += f"{value}\n"
if idx < len(self.data) - 1:
pr_body += "\n___\n"
if get_settings().config.verbosity_level >= 2:
logging.info(f"title:\n{title}\n{pr_body}")
get_logger().info(f"title:\n{title}\n{pr_body}")
return title, pr_body
return title, pr_body
def _prepare_file_labels(self):
self.file_label_dict = {}
for file in self.data['pr_files']:
try:
filename = file['filename'].replace("'", "`").replace('"', '`')
changes_summary = file['changes_summary']
label = file['label']
if label not in self.file_label_dict:
self.file_label_dict[label] = []
self.file_label_dict[label].append((filename, changes_summary))
except Exception as e:
get_logger().error(f"Error preparing file label dict {self.pr_id}: {e}")
pass
def process_pr_files_prediction(self, pr_body, value):
if not self.git_provider.is_supported("gfm_markdown"):
get_logger().info(f"Disabling semantic files types for {self.pr_id} since gfm_markdown is not supported")
return pr_body
try:
pr_body += "<table>"
header = f"Relevant files"
delta = 65
header += "&nbsp; " * delta
pr_body += f"""<thead><tr><th></th><th>{header}</th></tr></thead>"""
pr_body += """<tbody>"""
for semantic_label in value.keys():
s_label = semantic_label.strip("'").strip('"')
pr_body += f"""<tr><td><strong>{s_label.capitalize()}</strong></td>"""
list_tuples = value[semantic_label]
pr_body += f"""<td><details><summary>{len(list_tuples)} files</summary><table>"""
for filename, file_change_description in list_tuples:
filename = filename.replace("'", "`")
filename_publish = filename.split("/")[-1]
filename_publish = f"{filename_publish}"
if len(filename_publish) < (delta - 5):
filename_publish += "&nbsp; " * ((delta - 5) - len(filename_publish))
diff_plus_minus = ""
diff_files = self.git_provider.diff_files
for f in diff_files:
if f.filename.lower() == filename.lower():
num_plus_lines = f.num_plus_lines
num_minus_lines = f.num_minus_lines
diff_plus_minus += f"+{num_plus_lines}/-{num_minus_lines}"
break
# try to add line numbers link to code suggestions
link = ""
if hasattr(self.git_provider, 'get_line_link'):
filename = filename.strip()
link = self.git_provider.get_line_link(filename, relevant_line_start=-1)
file_change_description = self._insert_br_after_x_chars(file_change_description, x=(delta - 5))
pr_body += f"""
<tr>
<td>
<details>
<summary><strong>{filename_publish}</strong></summary>
<ul>
{filename}<br><br>
<strong>{file_change_description}</strong>
</ul>
</details>
</td>
<td><a href="{link}"> {diff_plus_minus}</a></td>
</tr>
"""
pr_body += """</table></details></td></tr>"""
pr_body += """</tr></tbody></table>"""
except Exception as e:
get_logger().error(f"Error processing pr files to markdown {self.pr_id}: {e}")
pass
return pr_body
def _insert_br_after_x_chars(self, text, x=70):
"""
Insert <br> into a string after a word that increases its length above x characters.
"""
if len(text) < x:
return text
words = text.split(' ')
new_text = ""
current_length = 0
for word in words:
# Check if adding this word exceeds x characters
if current_length + len(word) > x:
new_text += "<br>" # Insert line break
current_length = 0 # Reset counter
# Add the word to the new text
new_text += word + " "
current_length += len(word) + 1 # Add 1 for the space
return new_text.strip() # Remove trailing space

View File

@ -0,0 +1,171 @@
import copy
import re
from typing import List, Tuple
from jinja2 import Environment, StrictUndefined
from pr_agent.algo.ai_handler import AiHandler
from pr_agent.algo.pr_processing import get_pr_diff, retry_with_fallback_models
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.algo.utils import load_yaml, set_custom_labels, get_user_labels
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import get_git_provider
from pr_agent.git_providers.git_provider import get_main_pr_language
from pr_agent.log import get_logger
class PRGenerateLabels:
def __init__(self, pr_url: str, args: list = None):
"""
Initialize the PRGenerateLabels object with the necessary attributes and objects for generating labels
corresponding to the PR using an AI model.
Args:
pr_url (str): The URL of the pull request.
args (list, optional): List of arguments passed to the PRGenerateLabels class. Defaults to None.
"""
# Initialize the git provider and main PR language
self.git_provider = get_git_provider()(pr_url)
self.main_pr_language = get_main_pr_language(
self.git_provider.get_languages(), self.git_provider.get_files()
)
self.pr_id = self.git_provider.get_pr_id()
# Initialize the AI handler
self.ai_handler = AiHandler()
# Initialize the variables dictionary
self.vars = {
"title": self.git_provider.pr.title,
"branch": self.git_provider.get_pr_branch(),
"description": self.git_provider.get_pr_description(full=False),
"language": self.main_pr_language,
"diff": "", # empty diff for initial calculation
"use_bullet_points": get_settings().pr_description.use_bullet_points,
"extra_instructions": get_settings().pr_description.extra_instructions,
"commit_messages_str": self.git_provider.get_commit_messages(),
"enable_custom_labels": get_settings().config.enable_custom_labels,
"custom_labels_class": "", # will be filled if necessary in 'set_custom_labels' function
}
# Initialize the token handler
self.token_handler = TokenHandler(
self.git_provider.pr,
self.vars,
get_settings().pr_custom_labels_prompt.system,
get_settings().pr_custom_labels_prompt.user,
)
# Initialize patches_diff and prediction attributes
self.patches_diff = None
self.prediction = None
async def run(self):
"""
Generates a PR labels using an AI model and publishes it to the PR.
"""
try:
get_logger().info(f"Generating a PR labels {self.pr_id}")
if get_settings().config.publish_output:
self.git_provider.publish_comment("Preparing PR labels...", is_temporary=True)
await retry_with_fallback_models(self._prepare_prediction)
get_logger().info(f"Preparing answer {self.pr_id}")
if self.prediction:
self._prepare_data()
else:
return None
pr_labels = self._prepare_labels()
if get_settings().config.publish_output:
get_logger().info(f"Pushing labels {self.pr_id}")
current_labels = self.git_provider.get_labels()
user_labels = get_user_labels(current_labels)
pr_labels = pr_labels + user_labels
if self.git_provider.is_supported("get_labels"):
self.git_provider.publish_labels(pr_labels)
elif pr_labels:
value = ', '.join(v for v in pr_labels)
pr_labels_text = f"## PR Labels:\n{value}\n"
self.git_provider.publish_comment(pr_labels_text, is_temporary=False)
self.git_provider.remove_initial_comment()
except Exception as e:
get_logger().error(f"Error generating PR labels {self.pr_id}: {e}")
return ""
async def _prepare_prediction(self, model: str) -> None:
"""
Prepare the AI prediction for the PR labels based on the provided model.
Args:
model (str): The name of the model to be used for generating the prediction.
Returns:
None
Raises:
Any exceptions raised by the 'get_pr_diff' and '_get_prediction' functions.
"""
get_logger().info(f"Getting PR diff {self.pr_id}")
self.patches_diff = get_pr_diff(self.git_provider, self.token_handler, model)
get_logger().info(f"Getting AI prediction {self.pr_id}")
self.prediction = await self._get_prediction(model)
async def _get_prediction(self, model: str) -> str:
"""
Generate an AI prediction for the PR labels based on the provided model.
Args:
model (str): The name of the model to be used for generating the prediction.
Returns:
str: The generated AI prediction.
"""
variables = copy.deepcopy(self.vars)
variables["diff"] = self.patches_diff # update diff
environment = Environment(undefined=StrictUndefined)
set_custom_labels(variables)
system_prompt = environment.from_string(get_settings().pr_custom_labels_prompt.system).render(variables)
user_prompt = environment.from_string(get_settings().pr_custom_labels_prompt.user).render(variables)
if get_settings().config.verbosity_level >= 2:
get_logger().info(f"\nSystem prompt:\n{system_prompt}")
get_logger().info(f"\nUser prompt:\n{user_prompt}")
response, finish_reason = await self.ai_handler.chat_completion(
model=model,
temperature=0.2,
system=system_prompt,
user=user_prompt
)
if get_settings().config.verbosity_level >= 2:
get_logger().info(f"\nAI response:\n{response}")
return response
def _prepare_data(self):
# Load the AI prediction data into a dictionary
self.data = load_yaml(self.prediction.strip())
def _prepare_labels(self) -> List[str]:
pr_types = []
# If the 'labels' key is present in the dictionary, split its value by comma and assign it to 'pr_types'
if 'labels' in self.data:
if type(self.data['labels']) == list:
pr_types = self.data['labels']
elif type(self.data['labels']) == str:
pr_types = self.data['labels'].split(',')
return pr_types

View File

@ -1,5 +1,4 @@
import copy
import logging
from jinja2 import Environment, StrictUndefined
@ -9,6 +8,7 @@ from pr_agent.algo.token_handler import TokenHandler
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import get_git_provider
from pr_agent.git_providers.git_provider import get_main_pr_language
from pr_agent.log import get_logger
class PRInformationFromUser:
@ -34,22 +34,22 @@ class PRInformationFromUser:
self.prediction = None
async def run(self):
logging.info('Generating question to the user...')
get_logger().info('Generating question to the user...')
if get_settings().config.publish_output:
self.git_provider.publish_comment("Preparing questions...", is_temporary=True)
await retry_with_fallback_models(self._prepare_prediction)
logging.info('Preparing questions...')
get_logger().info('Preparing questions...')
pr_comment = self._prepare_pr_answer()
if get_settings().config.publish_output:
logging.info('Pushing questions...')
get_logger().info('Pushing questions...')
self.git_provider.publish_comment(pr_comment)
self.git_provider.remove_initial_comment()
return ""
async def _prepare_prediction(self, model):
logging.info('Getting PR diff...')
get_logger().info('Getting PR diff...')
self.patches_diff = get_pr_diff(self.git_provider, self.token_handler, model)
logging.info('Getting AI prediction...')
get_logger().info('Getting AI prediction...')
self.prediction = await self._get_prediction(model)
async def _get_prediction(self, model: str):
@ -59,8 +59,8 @@ class PRInformationFromUser:
system_prompt = environment.from_string(get_settings().pr_information_from_user_prompt.system).render(variables)
user_prompt = environment.from_string(get_settings().pr_information_from_user_prompt.user).render(variables)
if get_settings().config.verbosity_level >= 2:
logging.info(f"\nSystem prompt:\n{system_prompt}")
logging.info(f"\nUser prompt:\n{user_prompt}")
get_logger().info(f"\nSystem prompt:\n{system_prompt}")
get_logger().info(f"\nUser prompt:\n{user_prompt}")
response, finish_reason = await self.ai_handler.chat_completion(model=model, temperature=0.2,
system=system_prompt, user=user_prompt)
return response
@ -68,7 +68,7 @@ class PRInformationFromUser:
def _prepare_pr_answer(self) -> str:
model_output = self.prediction.strip()
if get_settings().config.verbosity_level >= 2:
logging.info(f"answer_str:\n{model_output}")
get_logger().info(f"answer_str:\n{model_output}")
answer_str = f"{model_output}\n\n Please respond to the questions above in the following format:\n\n" +\
"\n>/answer\n>1) ...\n>2) ...\n>...\n"
return answer_str

View File

@ -1,5 +1,4 @@
import copy
import logging
from jinja2 import Environment, StrictUndefined
@ -9,6 +8,7 @@ from pr_agent.algo.token_handler import TokenHandler
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import get_git_provider
from pr_agent.git_providers.git_provider import get_main_pr_language
from pr_agent.log import get_logger
class PRQuestions:
@ -44,22 +44,22 @@ class PRQuestions:
return question_str
async def run(self):
logging.info('Answering a PR question...')
get_logger().info('Answering a PR question...')
if get_settings().config.publish_output:
self.git_provider.publish_comment("Preparing answer...", is_temporary=True)
await retry_with_fallback_models(self._prepare_prediction)
logging.info('Preparing answer...')
get_logger().info('Preparing answer...')
pr_comment = self._prepare_pr_answer()
if get_settings().config.publish_output:
logging.info('Pushing answer...')
get_logger().info('Pushing answer...')
self.git_provider.publish_comment(pr_comment)
self.git_provider.remove_initial_comment()
return ""
async def _prepare_prediction(self, model: str):
logging.info('Getting PR diff...')
get_logger().info('Getting PR diff...')
self.patches_diff = get_pr_diff(self.git_provider, self.token_handler, model)
logging.info('Getting AI prediction...')
get_logger().info('Getting AI prediction...')
self.prediction = await self._get_prediction(model)
async def _get_prediction(self, model: str):
@ -69,8 +69,8 @@ class PRQuestions:
system_prompt = environment.from_string(get_settings().pr_questions_prompt.system).render(variables)
user_prompt = environment.from_string(get_settings().pr_questions_prompt.user).render(variables)
if get_settings().config.verbosity_level >= 2:
logging.info(f"\nSystem prompt:\n{system_prompt}")
logging.info(f"\nUser prompt:\n{user_prompt}")
get_logger().info(f"\nSystem prompt:\n{system_prompt}")
get_logger().info(f"\nUser prompt:\n{user_prompt}")
response, finish_reason = await self.ai_handler.chat_completion(model=model, temperature=0.2,
system=system_prompt, user=user_prompt)
return response
@ -79,5 +79,5 @@ class PRQuestions:
answer_str = f"Question: {self.question_str}\n\n"
answer_str += f"Answer:\n{self.prediction.strip()}\n\n"
if get_settings().config.verbosity_level >= 2:
logging.info(f"answer_str:\n{answer_str}")
get_logger().info(f"answer_str:\n{answer_str}")
return answer_str

View File

@ -1,6 +1,5 @@
import copy
import json
import logging
import datetime
from collections import OrderedDict
from typing import List, Tuple
@ -11,10 +10,11 @@ from yaml import SafeLoader
from pr_agent.algo.ai_handler import BaseAiHandler, AiHandler
from pr_agent.algo.pr_processing import get_pr_diff, retry_with_fallback_models
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.algo.utils import convert_to_markdown, try_fix_json, try_fix_yaml, load_yaml
from pr_agent.algo.utils import convert_to_markdown, load_yaml, try_fix_yaml, set_custom_labels, get_user_labels
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import get_git_provider
from pr_agent.git_providers.git_provider import IncrementalPR, get_main_pr_language
from pr_agent.log import get_logger
from pr_agent.servers.help import actions_help_text, bot_help_text
@ -64,6 +64,8 @@ class PRReviewer:
'answer_str': answer_str,
"extra_instructions": get_settings().pr_reviewer.extra_instructions,
"commit_messages_str": self.git_provider.get_commit_messages(),
"custom_labels": "",
"enable_custom_labels": get_settings().config.enable_custom_labels,
}
self.token_handler = TokenHandler(
@ -97,29 +99,41 @@ class PRReviewer:
try:
if self.is_auto and not get_settings().pr_reviewer.automatic_review:
logging.info(f'Automatic review is disabled {self.pr_url}')
get_logger().info(f'Automatic review is disabled {self.pr_url}')
return None
if self.incremental.is_incremental and not self._can_run_incremental_review():
return None
logging.info(f'Reviewing PR: {self.pr_url} ...')
get_logger().info(f'Reviewing PR: {self.pr_url} ...')
if get_settings().config.publish_output:
self.git_provider.publish_comment("Preparing review...", is_temporary=True)
await retry_with_fallback_models(self._prepare_prediction)
logging.info('Preparing PR review...')
get_logger().info('Preparing PR review...')
pr_comment = self._prepare_pr_review()
if get_settings().config.publish_output:
logging.info('Pushing PR review...')
self.git_provider.publish_comment(pr_comment)
self.git_provider.remove_initial_comment()
get_logger().info('Pushing PR review...')
previous_review_comment = self._get_previous_review_comment()
# publish the review
if get_settings().pr_reviewer.persistent_comment and not self.incremental.is_incremental:
self.git_provider.publish_persistent_comment(pr_comment,
initial_header="## PR Analysis",
update_header=True)
else:
self.git_provider.publish_comment(pr_comment)
self.git_provider.remove_initial_comment()
if previous_review_comment:
self._remove_previous_review_comment(previous_review_comment)
if get_settings().pr_reviewer.inline_code_comments:
logging.info('Pushing inline code comments...')
get_logger().info('Pushing inline code comments...')
self._publish_inline_code_comments()
except Exception as e:
logging.error(f"Failed to review PR: {e}")
get_logger().error(f"Failed to review PR: {e}")
async def _prepare_prediction(self, model: str) -> None:
"""
@ -131,9 +145,9 @@ class PRReviewer:
Returns:
None
"""
logging.info('Getting PR diff...')
get_logger().info('Getting PR diff...')
self.patches_diff = get_pr_diff(self.git_provider, self.token_handler, model)
logging.info('Getting AI prediction...')
get_logger().info('Getting AI prediction...')
self.prediction = await self._get_prediction(model)
async def _get_prediction(self, model: str) -> str:
@ -154,8 +168,8 @@ class PRReviewer:
user_prompt = environment.from_string(get_settings().pr_review_prompt.user).render(variables)
if get_settings().config.verbosity_level >= 2:
logging.info(f"\nSystem prompt:\n{system_prompt}")
logging.info(f"\nUser prompt:\n{user_prompt}")
get_logger().info(f"\nSystem prompt:\n{system_prompt}")
get_logger().info(f"\nUser prompt:\n{user_prompt}")
response, finish_reason = await self.ai_handler.chat_completion(
model=model,
@ -164,6 +178,9 @@ class PRReviewer:
user=user_prompt
)
if get_settings().config.verbosity_level >= 2:
get_logger().info(f"\nAI response:\n{response}")
return response
def _prepare_pr_review(self) -> str:
@ -208,14 +225,22 @@ class PRReviewer:
link = self.git_provider.generate_link_to_relevant_line_number(suggestion)
if link:
suggestion['relevant line'] = f"[{suggestion['relevant line']}]({link})"
else:
pass
# Add incremental review section
if self.incremental.is_incremental:
last_commit_url = f"{self.git_provider.get_pr_url()}/commits/" \
f"{self.git_provider.incremental.first_new_commit_sha}"
last_commit_msg = self.incremental.commits_range[0].commit.message if self.incremental.commits_range else ""
incremental_review_markdown_text = f"Starting from commit {last_commit_url}"
if last_commit_msg:
replacement = last_commit_msg.splitlines(keepends=False)[0].replace('_', r'\_')
incremental_review_markdown_text += f" \n_({replacement})_"
data = OrderedDict(data)
data.update({'Incremental PR Review': {
"⏮️ Review for commits since previous PR-Agent review": f"Starting from commit {last_commit_url}"}})
"⏮️ Review for commits since previous PR-Agent review": incremental_review_markdown_text}})
data.move_to_end('Incremental PR Review', last=False)
markdown_text = convert_to_markdown(data, self.git_provider.is_supported("gfm_markdown"))
@ -224,14 +249,22 @@ class PRReviewer:
# Add help text if not in CLI mode
if not get_settings().get("CONFIG.CLI_MODE", False):
markdown_text += "\n### How to use\n"
if user and '[bot]' not in user:
if self.git_provider.is_supported("gfm_markdown"):
markdown_text += "\n <details> <summary> Instructions</summary>\n\n"
bot_user = "[bot]" if get_settings().github_app.override_deployment_type else get_settings().github_app.bot_user
if user and bot_user not in user:
markdown_text += bot_help_text(user)
else:
markdown_text += actions_help_text
if self.git_provider.is_supported("gfm_markdown"):
markdown_text += "\n</details>\n"
# Add custom labels from the review prediction (effort, security)
self.set_review_labels(data)
# Log markdown response if verbosity level is high
if get_settings().config.verbosity_level >= 2:
logging.info(f"Markdown response:\n{markdown_text}")
get_logger().info(f"Markdown response:\n{markdown_text}")
if markdown_text == None or len(markdown_text) == 0:
markdown_text = ""
@ -245,21 +278,14 @@ class PRReviewer:
if get_settings().pr_reviewer.num_code_suggestions == 0:
return
review_text = self.prediction.strip()
review_text = review_text.removeprefix('```yaml').rstrip('`')
try:
data = yaml.load(review_text, Loader=SafeLoader)
except Exception as e:
logging.error(f"Failed to parse AI prediction: {e}")
data = try_fix_yaml(review_text)
data = load_yaml(self.prediction.strip())
comments: List[str] = []
for suggestion in data.get('PR Feedback', {}).get('Code feedback', []):
relevant_file = suggestion.get('relevant file', '').strip()
relevant_line_in_file = suggestion.get('relevant line', '').strip()
content = suggestion.get('suggestion', '')
if not relevant_file or not relevant_line_in_file or not content:
logging.info("Skipping inline comment with missing file/line/content")
get_logger().info("Skipping inline comment with missing file/line/content")
continue
if self.git_provider.is_supported("create_inline_comment"):
@ -295,3 +321,83 @@ class PRReviewer:
break
return question_str, answer_str
def _get_previous_review_comment(self):
"""
Get the previous review comment if it exists.
"""
try:
if get_settings().pr_reviewer.remove_previous_review_comment and hasattr(self.git_provider, "get_previous_review"):
return self.git_provider.get_previous_review(
full=not self.incremental.is_incremental,
incremental=self.incremental.is_incremental,
)
except Exception as e:
get_logger().exception(f"Failed to get previous review comment, error: {e}")
def _remove_previous_review_comment(self, comment):
"""
Remove the previous review comment if it exists.
"""
try:
if get_settings().pr_reviewer.remove_previous_review_comment and comment:
self.git_provider.remove_comment(comment)
except Exception as e:
get_logger().exception(f"Failed to remove previous review comment, error: {e}")
def _can_run_incremental_review(self) -> bool:
"""Checks if we can run incremental review according the various configurations and previous review"""
# checking if running is auto mode but there are no new commits
if self.is_auto and not self.incremental.first_new_commit_sha:
get_logger().info(f"Incremental review is enabled for {self.pr_url} but there are no new commits")
return False
# checking if there are enough commits to start the review
num_new_commits = len(self.incremental.commits_range)
num_commits_threshold = get_settings().pr_reviewer.minimal_commits_for_incremental_review
not_enough_commits = num_new_commits < num_commits_threshold
# checking if the commits are not too recent to start the review
recent_commits_threshold = datetime.datetime.now() - datetime.timedelta(
minutes=get_settings().pr_reviewer.minimal_minutes_for_incremental_review
)
last_seen_commit_date = (
self.incremental.last_seen_commit.commit.author.date if self.incremental.last_seen_commit else None
)
all_commits_too_recent = (
last_seen_commit_date > recent_commits_threshold if self.incremental.last_seen_commit else False
)
# check all the thresholds or just one to start the review
condition = any if get_settings().pr_reviewer.require_all_thresholds_for_incremental_review else all
if condition((not_enough_commits, all_commits_too_recent)):
get_logger().info(
f"Incremental review is enabled for {self.pr_url} but didn't pass the threshold check to run:"
f"\n* Number of new commits = {num_new_commits} (threshold is {num_commits_threshold})"
f"\n* Last seen commit date = {last_seen_commit_date} (threshold is {recent_commits_threshold})"
)
return False
return True
def set_review_labels(self, data):
if (get_settings().pr_reviewer.enable_review_labels_security or
get_settings().pr_reviewer.enable_review_labels_effort):
try:
review_labels = []
if get_settings().pr_reviewer.enable_review_labels_effort:
estimated_effort = data['PR Analysis']['Estimated effort to review [1-5]']
estimated_effort_number = int(estimated_effort.split(',')[0])
if 1 <= estimated_effort_number <= 5: # 1, because ...
review_labels.append(f'Review effort [1-5]: {estimated_effort_number}')
if get_settings().pr_reviewer.enable_review_labels_security:
security_concerns = data['PR Analysis']['Security concerns'] # yes, because ...
security_concerns_bool = 'yes' in security_concerns.lower() or 'true' in security_concerns.lower()
if security_concerns_bool:
review_labels.append('Possible security concern')
current_labels = self.git_provider.get_labels()
current_labels_filtered = [label for label in current_labels if
not label.lower().startswith('review effort [1-5]:') and not label.lower().startswith(
'possible security concern')]
if current_labels or review_labels:
get_logger().info(f"Setting review labels: {review_labels + current_labels_filtered}")
self.git_provider.publish_labels(review_labels + current_labels_filtered)
except Exception as e:
get_logger().error(f"Failed to set review labels, error: {e}")

View File

@ -1,18 +1,19 @@
import copy
import json
import logging
import time
from enum import Enum
from typing import List, Tuple
import pinecone
from typing import List
import openai
import pandas as pd
import pinecone
from pinecone_datasets import Dataset, DatasetMetadata
from pydantic import BaseModel, Field
from pr_agent.algo import MAX_TOKENS
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.algo.utils import get_max_tokens
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import get_git_provider
from pinecone_datasets import Dataset, DatasetMetadata
from pr_agent.log import get_logger
MODEL = "text-embedding-ada-002"
@ -47,6 +48,13 @@ class PRSimilarIssue:
# check if index exists, and if repo is already indexed
run_from_scratch = False
if run_from_scratch: # for debugging
pinecone.init(api_key=api_key, environment=environment)
if index_name in pinecone.list_indexes():
get_logger().info('Removing index...')
pinecone.delete_index(index_name)
get_logger().info('Done')
upsert = True
pinecone.init(api_key=api_key, environment=environment)
if not index_name in pinecone.list_indexes():
@ -62,11 +70,11 @@ class PRSimilarIssue:
upsert = False
if run_from_scratch or upsert: # index the entire repo
logging.info('Indexing the entire repo...')
get_logger().info('Indexing the entire repo...')
logging.info('Getting issues...')
get_logger().info('Getting issues...')
issues = list(repo_obj.get_issues(state='all'))
logging.info('Done')
get_logger().info('Done')
self._update_index_with_issues(issues, repo_name_for_index, upsert=upsert)
else: # update index if needed
pinecone_index = pinecone.Index(index_name=index_name)
@ -92,20 +100,20 @@ class PRSimilarIssue:
break
if issues_to_update:
logging.info(f'Updating index with {counter} new issues...')
get_logger().info(f'Updating index with {counter} new issues...')
self._update_index_with_issues(issues_to_update, repo_name_for_index, upsert=True)
else:
logging.info('No new issues to update')
get_logger().info('No new issues to update')
async def run(self):
logging.info('Getting issue...')
get_logger().info('Getting issue...')
repo_name, original_issue_number = self.git_provider._parse_issue_url(self.issue_url.split('=')[-1])
issue_main = self.git_provider.repo_obj.get_issue(original_issue_number)
issue_str, comments, number = self._process_issue(issue_main)
openai.api_key = get_settings().openai.key
logging.info('Done')
get_logger().info('Done')
logging.info('Querying...')
get_logger().info('Querying...')
res = openai.Embedding.create(input=[issue_str], engine=MODEL)
embeds = [record['embedding'] for record in res['data']]
pinecone_index = pinecone.Index(index_name=self.index_name)
@ -117,7 +125,16 @@ class PRSimilarIssue:
relevant_comment_number_list = []
score_list = []
for r in res['matches']:
issue_number = int(r["id"].split('.')[0].split('_')[-1])
# skip example issue
if 'example_issue_' in r["id"]:
continue
try:
issue_number = int(r["id"].split('.')[0].split('_')[-1])
except:
get_logger().debug(f"Failed to parse issue number from {r['id']}")
continue
if original_issue_number == issue_number:
continue
if issue_number not in relevant_issues_number_list:
@ -127,9 +144,9 @@ class PRSimilarIssue:
else:
relevant_comment_number_list.append(-1)
score_list.append(str("{:.2f}".format(r['score'])))
logging.info('Done')
get_logger().info('Done')
logging.info('Publishing response...')
get_logger().info('Publishing response...')
similar_issues_str = "### Similar Issues\n___\n\n"
for i, issue_number_similar in enumerate(relevant_issues_number_list):
issue = self.git_provider.repo_obj.get_issue(issue_number_similar)
@ -140,8 +157,8 @@ class PRSimilarIssue:
similar_issues_str += f"{i + 1}. **[{title}]({url})** (score={score_list[i]})\n\n"
if get_settings().config.publish_output:
response = issue_main.create_comment(similar_issues_str)
logging.info(similar_issues_str)
logging.info('Done')
get_logger().info(similar_issues_str)
get_logger().info('Done')
def _process_issue(self, issue):
header = issue.title
@ -155,7 +172,7 @@ class PRSimilarIssue:
return issue_str, comments, number
def _update_index_with_issues(self, issues_list, repo_name_for_index, upsert=False):
logging.info('Processing issues...')
get_logger().info('Processing issues...')
corpus = Corpus()
example_issue_record = Record(
id=f"example_issue_{repo_name_for_index}",
@ -171,9 +188,9 @@ class PRSimilarIssue:
counter += 1
if counter % 100 == 0:
logging.info(f"Scanned {counter} issues")
get_logger().info(f"Scanned {counter} issues")
if counter >= self.max_issues_to_scan:
logging.info(f"Scanned {self.max_issues_to_scan} issues, stopping")
get_logger().info(f"Scanned {self.max_issues_to_scan} issues, stopping")
break
issue_str, comments, number = self._process_issue(issue)
@ -181,7 +198,7 @@ class PRSimilarIssue:
username = issue.user.login
created_at = str(issue.created_at)
if len(issue_str) < 8000 or \
self.token_handler.count_tokens(issue_str) < MAX_TOKENS[MODEL]: # fast reject first
self.token_handler.count_tokens(issue_str) < get_max_tokens(MODEL): # fast reject first
issue_record = Record(
id=issue_key + "." + "issue",
text=issue_str,
@ -210,9 +227,9 @@ class PRSimilarIssue:
)
corpus.append(comment_record)
df = pd.DataFrame(corpus.dict()["documents"])
logging.info('Done')
get_logger().info('Done')
logging.info('Embedding...')
get_logger().info('Embedding...')
openai.api_key = get_settings().openai.key
list_to_encode = list(df["text"].values)
try:
@ -220,7 +237,7 @@ class PRSimilarIssue:
embeds = [record['embedding'] for record in res['data']]
except:
embeds = []
logging.error('Failed to embed entire list, embedding one by one...')
get_logger().error('Failed to embed entire list, embedding one by one...')
for i, text in enumerate(list_to_encode):
try:
res = openai.Embedding.create(input=[text], engine=MODEL)
@ -231,21 +248,23 @@ class PRSimilarIssue:
meta = DatasetMetadata.empty()
meta.dense_model.dimension = len(embeds[0])
ds = Dataset.from_pandas(df, meta)
logging.info('Done')
get_logger().info('Done')
api_key = get_settings().pinecone.api_key
environment = get_settings().pinecone.environment
if not upsert:
logging.info('Creating index from scratch...')
get_logger().info('Creating index from scratch...')
ds.to_pinecone_index(self.index_name, api_key=api_key, environment=environment)
time.sleep(15) # wait for pinecone to finalize indexing before querying
else:
logging.info('Upserting index...')
get_logger().info('Upserting index...')
namespace = ""
batch_size: int = 100
concurrency: int = 10
pinecone.init(api_key=api_key, environment=environment)
ds._upsert_to_index(self.index_name, namespace, batch_size, concurrency)
logging.info('Done')
time.sleep(5) # wait for pinecone to finalize upserting before querying
get_logger().info('Done')
class IssueLevel(str, Enum):

View File

@ -1,5 +1,4 @@
import copy
import logging
from datetime import date
from time import sleep
from typing import Tuple
@ -10,8 +9,9 @@ from pr_agent.algo.ai_handler import BaseAiHandler, AiHandler
from pr_agent.algo.pr_processing import get_pr_diff, retry_with_fallback_models
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import GithubProvider, get_git_provider
from pr_agent.git_providers import get_git_provider
from pr_agent.git_providers.git_provider import get_main_pr_language
from pr_agent.log import get_logger
CHANGELOG_LINES = 50
@ -48,26 +48,26 @@ class PRUpdateChangelog:
async def run(self):
# assert type(self.git_provider) == GithubProvider, "Currently only Github is supported"
logging.info('Updating the changelog...')
get_logger().info('Updating the changelog...')
if get_settings().config.publish_output:
self.git_provider.publish_comment("Preparing changelog updates...", is_temporary=True)
await retry_with_fallback_models(self._prepare_prediction)
logging.info('Preparing PR changelog updates...')
get_logger().info('Preparing PR changelog updates...')
new_file_content, answer = self._prepare_changelog_update()
if get_settings().config.publish_output:
self.git_provider.remove_initial_comment()
logging.info('Publishing changelog updates...')
get_logger().info('Publishing changelog updates...')
if self.commit_changelog:
logging.info('Pushing PR changelog updates to repo...')
get_logger().info('Pushing PR changelog updates to repo...')
self._push_changelog_update(new_file_content, answer)
else:
logging.info('Publishing PR changelog as comment...')
get_logger().info('Publishing PR changelog as comment...')
self.git_provider.publish_comment(f"**Changelog updates:**\n\n{answer}")
async def _prepare_prediction(self, model: str):
logging.info('Getting PR diff...')
get_logger().info('Getting PR diff...')
self.patches_diff = get_pr_diff(self.git_provider, self.token_handler, model)
logging.info('Getting AI prediction...')
get_logger().info('Getting AI prediction...')
self.prediction = await self._get_prediction(model)
async def _get_prediction(self, model: str):
@ -77,8 +77,8 @@ class PRUpdateChangelog:
system_prompt = environment.from_string(get_settings().pr_update_changelog_prompt.system).render(variables)
user_prompt = environment.from_string(get_settings().pr_update_changelog_prompt.user).render(variables)
if get_settings().config.verbosity_level >= 2:
logging.info(f"\nSystem prompt:\n{system_prompt}")
logging.info(f"\nUser prompt:\n{user_prompt}")
get_logger().info(f"\nSystem prompt:\n{system_prompt}")
get_logger().info(f"\nUser prompt:\n{user_prompt}")
response, finish_reason = await self.ai_handler.chat_completion(model=model, temperature=0.2,
system=system_prompt, user=user_prompt)
@ -100,7 +100,7 @@ class PRUpdateChangelog:
"\n>'/update_changelog --pr_update_changelog.push_changelog_changes=true'\n"
if get_settings().config.verbosity_level >= 2:
logging.info(f"answer:\n{answer}")
get_logger().info(f"answer:\n{answer}")
return new_file_content, answer
@ -149,7 +149,7 @@ Example:
except Exception:
self.changelog_file_str = ""
if self.commit_changelog:
logging.info("No CHANGELOG.md file found in the repository. Creating one...")
get_logger().info("No CHANGELOG.md file found in the repository. Creating one...")
changelog_file = self.git_provider.repo_obj.create_file(path="CHANGELOG.md",
message='add CHANGELOG.md',
content="",