Merge remote-tracking branch 'upstream/main' into abstract-BaseAiHandler

This commit is contained in:
Brian Pham
2023-12-09 16:47:13 +00:00
104 changed files with 3813 additions and 1068 deletions

View File

@ -1,6 +1,6 @@
import logging
import os
import boto3
import litellm
import openai
from litellm import acompletion
@ -8,6 +8,8 @@ from openai.error import APIError, RateLimitError, Timeout, TryAgain
from retry import retry
from pr_agent.config_loader import get_settings
from pr_agent.algo.base_ai_handler import BaseAiHandler
from pr_agent.log import get_logger
OPENAI_RETRIES = 5
@ -23,39 +25,50 @@ class AiHandler(BaseAiHandler):
Initializes the OpenAI API key and other settings from a configuration file.
Raises a ValueError if the OpenAI key is missing.
"""
try:
self.azure = False
self.aws_bedrock_client = None
if get_settings().get("OPENAI.KEY", None):
openai.api_key = get_settings().openai.key
litellm.openai_key = get_settings().openai.key
if get_settings().get("litellm.use_client"):
litellm_token = get_settings().get("litellm.LITELLM_TOKEN")
assert litellm_token, "LITELLM_TOKEN is required"
os.environ["LITELLM_TOKEN"] = litellm_token
litellm.use_client = True
self.azure = False
if get_settings().get("OPENAI.ORG", None):
litellm.organization = get_settings().openai.org
if get_settings().get("OPENAI.API_TYPE", None):
if get_settings().openai.api_type == "azure":
self.azure = True
litellm.azure_key = get_settings().openai.key
if get_settings().get("OPENAI.API_VERSION", None):
litellm.api_version = get_settings().openai.api_version
if get_settings().get("OPENAI.API_BASE", None):
litellm.api_base = get_settings().openai.api_base
if get_settings().get("ANTHROPIC.KEY", None):
litellm.anthropic_key = get_settings().anthropic.key
if get_settings().get("COHERE.KEY", None):
litellm.cohere_key = get_settings().cohere.key
if get_settings().get("REPLICATE.KEY", None):
litellm.replicate_key = get_settings().replicate.key
if get_settings().get("REPLICATE.KEY", None):
litellm.replicate_key = get_settings().replicate.key
if get_settings().get("HUGGINGFACE.KEY", None):
litellm.huggingface_key = get_settings().huggingface.key
if get_settings().get("HUGGINGFACE.API_BASE", None):
litellm.api_base = get_settings().huggingface.api_base
except AttributeError as e:
raise ValueError("OpenAI key is required") from e
if get_settings().get("litellm.use_client"):
litellm_token = get_settings().get("litellm.LITELLM_TOKEN")
assert litellm_token, "LITELLM_TOKEN is required"
os.environ["LITELLM_TOKEN"] = litellm_token
litellm.use_client = True
if get_settings().get("OPENAI.ORG", None):
litellm.organization = get_settings().openai.org
if get_settings().get("OPENAI.API_TYPE", None):
if get_settings().openai.api_type == "azure":
self.azure = True
litellm.azure_key = get_settings().openai.key
if get_settings().get("OPENAI.API_VERSION", None):
litellm.api_version = get_settings().openai.api_version
if get_settings().get("OPENAI.API_BASE", None):
litellm.api_base = get_settings().openai.api_base
if get_settings().get("ANTHROPIC.KEY", None):
litellm.anthropic_key = get_settings().anthropic.key
if get_settings().get("COHERE.KEY", None):
litellm.cohere_key = get_settings().cohere.key
if get_settings().get("REPLICATE.KEY", None):
litellm.replicate_key = get_settings().replicate.key
if get_settings().get("REPLICATE.KEY", None):
litellm.replicate_key = get_settings().replicate.key
if get_settings().get("HUGGINGFACE.KEY", None):
litellm.huggingface_key = get_settings().huggingface.key
if get_settings().get("HUGGINGFACE.API_BASE", None):
litellm.api_base = get_settings().huggingface.api_base
if get_settings().get("VERTEXAI.VERTEX_PROJECT", None):
litellm.vertex_project = get_settings().vertexai.vertex_project
litellm.vertex_location = get_settings().get(
"VERTEXAI.VERTEX_LOCATION", None
)
if get_settings().get("AWS.BEDROCK_REGION", None):
litellm.AmazonAnthropicConfig.max_tokens_to_sample = 2000
self.aws_bedrock_client = boto3.client(
service_name="bedrock-runtime",
region_name=get_settings().aws.bedrock_region,
)
@property
def deployment_id(self):
@ -89,33 +102,37 @@ class AiHandler(BaseAiHandler):
try:
deployment_id = self.deployment_id
if get_settings().config.verbosity_level >= 2:
logging.debug(
get_logger().debug(
f"Generating completion with {model}"
f"{(' from deployment ' + deployment_id) if deployment_id else ''}"
)
response = await acompletion(
model=model,
deployment_id=deployment_id,
messages=[
{"role": "system", "content": system},
{"role": "user", "content": user}
],
temperature=temperature,
azure=self.azure,
force_timeout=get_settings().config.ai_timeout
)
if self.azure:
model = 'azure/' + model
messages = [{"role": "system", "content": system}, {"role": "user", "content": user}]
kwargs = {
"model": model,
"deployment_id": deployment_id,
"messages": messages,
"temperature": temperature,
"force_timeout": get_settings().config.ai_timeout,
}
if self.aws_bedrock_client:
kwargs["aws_bedrock_client"] = self.aws_bedrock_client
response = await acompletion(**kwargs)
except (APIError, Timeout, TryAgain) as e:
logging.error("Error during OpenAI inference: ", e)
get_logger().error("Error during OpenAI inference: ", e)
raise
except (RateLimitError) as e:
logging.error("Rate limit error during OpenAI inference: ", e)
get_logger().error("Rate limit error during OpenAI inference: ", e)
raise
except (Exception) as e:
logging.error("Unknown error during OpenAI inference: ", e)
get_logger().error("Unknown error during OpenAI inference: ", e)
raise TryAgain from e
if response is None or len(response["choices"]) == 0:
raise TryAgain
resp = response["choices"][0]['message']['content']
finish_reason = response["choices"][0]["finish_reason"]
print(resp, finish_reason)
usage = response.get("usage")
get_logger().info("AI response", response=resp, messages=messages, finish_reason=finish_reason,
model=model, usage=usage)
return resp, finish_reason