Update Python code formatting, configuration loading, and local model additions

1. Code Formatting:
   - Standardized Python code formatting across multiple files to align with PEP 8 guidelines. This includes adjustments to whitespace, line breaks, and inline comments.

2. Configuration Loader Enhancements:
   - Enhanced the `get_settings` function in `config_loader.py` to provide more robust handling of settings retrieval. Added detailed documentation to improve code maintainability and clarity.

3. Model Addition in __init__.py:
   - Added a new model "ollama/llama3" with a token limit to the MAX_TOKENS dictionary in `__init__.py` to support new AI capabilities and configurations.
This commit is contained in:
Kamakura
2024-06-03 23:58:31 +08:00
parent ab31d2f1f8
commit b4f0ad948f
11 changed files with 48 additions and 29 deletions

View File

@ -1,7 +1,7 @@
try:
from langchain.chat_models import ChatOpenAI, AzureChatOpenAI
from langchain.schema import SystemMessage, HumanMessage
except: # we don't enforce langchain as a dependency, so if it's not installed, just move on
except: # we don't enforce langchain as a dependency, so if it's not installed, just move on
pass
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
@ -14,6 +14,7 @@ import functools
OPENAI_RETRIES = 5
class LangChainOpenAIHandler(BaseAiHandler):
def __init__(self):
# Initialize OpenAIHandler specific attributes here
@ -36,7 +37,7 @@ class LangChainOpenAIHandler(BaseAiHandler):
raise ValueError(f"OpenAI {e.name} is required") from e
else:
raise e
@property
def chat(self):
if self.azure:
@ -51,17 +52,18 @@ class LangChainOpenAIHandler(BaseAiHandler):
Returns the deployment ID for the OpenAI API.
"""
return get_settings().get("OPENAI.DEPLOYMENT_ID", None)
@retry(exceptions=(APIError, Timeout, TryAgain, AttributeError, RateLimitError),
tries=OPENAI_RETRIES, delay=2, backoff=2, jitter=(1, 3))
async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2):
try:
messages=[SystemMessage(content=system), HumanMessage(content=user)]
messages = [SystemMessage(content=system), HumanMessage(content=user)]
# get a chat completion from the formatted messages
resp = self.chat(messages, model=model, temperature=temperature)
finish_reason="completed"
finish_reason = "completed"
return resp.content, finish_reason
except (Exception) as e:
get_logger().error("Unknown error during OpenAI inference: ", e)
raise e
raise e