mirror of
https://github.com/qodo-ai/pr-agent.git
synced 2025-07-13 17:20:38 +08:00
Update Python code formatting, configuration loading, and local model additions
1. Code Formatting: - Standardized Python code formatting across multiple files to align with PEP 8 guidelines. This includes adjustments to whitespace, line breaks, and inline comments. 2. Configuration Loader Enhancements: - Enhanced the `get_settings` function in `config_loader.py` to provide more robust handling of settings retrieval. Added detailed documentation to improve code maintainability and clarity. 3. Model Addition in __init__.py: - Added a new model "ollama/llama3" with a token limit to the MAX_TOKENS dictionary in `__init__.py` to support new AI capabilities and configurations.
This commit is contained in:
@ -1,5 +1,6 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
|
||||
class BaseAiHandler(ABC):
|
||||
"""
|
||||
This class defines the interface for an AI handler to be used by the PR Agents.
|
||||
@ -14,7 +15,7 @@ class BaseAiHandler(ABC):
|
||||
def deployment_id(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
@abstractmethod
|
||||
async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2, img_path: str = None):
|
||||
"""
|
||||
This method should be implemented to return a chat completion from the AI model.
|
||||
@ -25,4 +26,3 @@ class BaseAiHandler(ABC):
|
||||
temperature (float): the temperature to use for the chat completion
|
||||
"""
|
||||
pass
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
try:
|
||||
from langchain.chat_models import ChatOpenAI, AzureChatOpenAI
|
||||
from langchain.schema import SystemMessage, HumanMessage
|
||||
except: # we don't enforce langchain as a dependency, so if it's not installed, just move on
|
||||
except: # we don't enforce langchain as a dependency, so if it's not installed, just move on
|
||||
pass
|
||||
|
||||
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
|
||||
@ -14,6 +14,7 @@ import functools
|
||||
|
||||
OPENAI_RETRIES = 5
|
||||
|
||||
|
||||
class LangChainOpenAIHandler(BaseAiHandler):
|
||||
def __init__(self):
|
||||
# Initialize OpenAIHandler specific attributes here
|
||||
@ -36,7 +37,7 @@ class LangChainOpenAIHandler(BaseAiHandler):
|
||||
raise ValueError(f"OpenAI {e.name} is required") from e
|
||||
else:
|
||||
raise e
|
||||
|
||||
|
||||
@property
|
||||
def chat(self):
|
||||
if self.azure:
|
||||
@ -51,17 +52,18 @@ class LangChainOpenAIHandler(BaseAiHandler):
|
||||
Returns the deployment ID for the OpenAI API.
|
||||
"""
|
||||
return get_settings().get("OPENAI.DEPLOYMENT_ID", None)
|
||||
|
||||
@retry(exceptions=(APIError, Timeout, TryAgain, AttributeError, RateLimitError),
|
||||
tries=OPENAI_RETRIES, delay=2, backoff=2, jitter=(1, 3))
|
||||
async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2):
|
||||
try:
|
||||
messages=[SystemMessage(content=system), HumanMessage(content=user)]
|
||||
|
||||
messages = [SystemMessage(content=system), HumanMessage(content=user)]
|
||||
|
||||
# get a chat completion from the formatted messages
|
||||
resp = self.chat(messages, model=model, temperature=temperature)
|
||||
finish_reason="completed"
|
||||
finish_reason = "completed"
|
||||
return resp.content, finish_reason
|
||||
|
||||
|
||||
except (Exception) as e:
|
||||
get_logger().error("Unknown error during OpenAI inference: ", e)
|
||||
raise e
|
||||
raise e
|
||||
|
@ -61,7 +61,7 @@ class LiteLLMAIHandler(BaseAiHandler):
|
||||
if get_settings().get("HUGGINGFACE.API_BASE", None) and 'huggingface' in get_settings().config.model:
|
||||
litellm.api_base = get_settings().huggingface.api_base
|
||||
self.api_base = get_settings().huggingface.api_base
|
||||
if get_settings().get("OLLAMA.API_BASE", None) :
|
||||
if get_settings().get("OLLAMA.API_BASE", None):
|
||||
litellm.api_base = get_settings().ollama.api_base
|
||||
self.api_base = get_settings().ollama.api_base
|
||||
if get_settings().get("HUGGINGFACE.REPITITION_PENALTY", None):
|
||||
@ -129,7 +129,7 @@ class LiteLLMAIHandler(BaseAiHandler):
|
||||
"messages": messages,
|
||||
"temperature": temperature,
|
||||
"force_timeout": get_settings().config.ai_timeout,
|
||||
"api_base" : self.api_base,
|
||||
"api_base": self.api_base,
|
||||
}
|
||||
if self.aws_bedrock_client:
|
||||
kwargs["aws_bedrock_client"] = self.aws_bedrock_client
|
||||
|
@ -28,13 +28,14 @@ class OpenAIHandler(BaseAiHandler):
|
||||
|
||||
except AttributeError as e:
|
||||
raise ValueError("OpenAI key is required") from e
|
||||
|
||||
@property
|
||||
def deployment_id(self):
|
||||
"""
|
||||
Returns the deployment ID for the OpenAI API.
|
||||
"""
|
||||
return get_settings().get("OPENAI.DEPLOYMENT_ID", None)
|
||||
|
||||
|
||||
@retry(exceptions=(APIError, Timeout, TryAgain, AttributeError, RateLimitError),
|
||||
tries=OPENAI_RETRIES, delay=2, backoff=2, jitter=(1, 3))
|
||||
async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2):
|
||||
@ -54,8 +55,8 @@ class OpenAIHandler(BaseAiHandler):
|
||||
finish_reason = chat_completion["choices"][0]["finish_reason"]
|
||||
usage = chat_completion.get("usage")
|
||||
get_logger().info("AI response", response=resp, messages=messages, finish_reason=finish_reason,
|
||||
model=model, usage=usage)
|
||||
return resp, finish_reason
|
||||
model=model, usage=usage)
|
||||
return resp, finish_reason
|
||||
except (APIError, Timeout, TryAgain) as e:
|
||||
get_logger().error("Error during OpenAI inference: ", e)
|
||||
raise
|
||||
@ -64,4 +65,4 @@ class OpenAIHandler(BaseAiHandler):
|
||||
raise
|
||||
except (Exception) as e:
|
||||
get_logger().error("Unknown error during OpenAI inference: ", e)
|
||||
raise TryAgain from e
|
||||
raise TryAgain from e
|
||||
|
Reference in New Issue
Block a user