mirror of
https://github.com/qodo-ai/pr-agent.git
synced 2025-07-03 20:30:41 +08:00
Merge remote-tracking branch 'origin/main'
This commit is contained in:
@ -22,7 +22,7 @@ PR-Agent aims to help efficiently review and handle pull requests, by providing
|
||||
[](https://chromewebstore.google.com/detail/qodo-merge-ai-powered-cod/ephlnjeghhogofkifjloamocljapahnl)
|
||||
[](https://github.com/apps/qodo-merge-pro/)
|
||||
[](https://github.com/apps/qodo-merge-pro-for-open-source/)
|
||||
[](https://discord.com/channels/1057273017547378788/1126104260430528613)
|
||||
[](https://discord.com/invite/SgSxuQ65GF)
|
||||
<a href="https://github.com/Codium-ai/pr-agent/commits/main">
|
||||
<img alt="GitHub" src="https://img.shields.io/github/last-commit/Codium-ai/pr-agent/main?style=for-the-badge" height="20">
|
||||
</a>
|
||||
|
@ -6,7 +6,7 @@ To run PR-Agent locally, you first need to acquire two keys:
|
||||
|
||||
## Using Docker image
|
||||
|
||||
A list of the relevant tools can be found in the [tools guide](../tools/ask.md).
|
||||
A list of the relevant tools can be found in the [tools guide](../tools/).
|
||||
|
||||
To invoke a tool (for example `review`), you can run PR-Agent directly from the Docker image. Here's how:
|
||||
|
||||
|
@ -2,7 +2,8 @@
|
||||
|
||||
See [here](https://github.com/Codium-ai/pr-agent/blob/main/pr_agent/algo/__init__.py) for a list of available models.
|
||||
To use a different model than the default (o3-mini), you need to edit in the [configuration file](https://github.com/Codium-ai/pr-agent/blob/main/pr_agent/settings/configuration.toml#L2) the fields:
|
||||
```
|
||||
|
||||
```toml
|
||||
[config]
|
||||
model = "..."
|
||||
fallback_models = ["..."]
|
||||
@ -18,7 +19,8 @@ You can give parameters via a configuration file, or from environment variables.
|
||||
### Azure
|
||||
|
||||
To use Azure, set in your `.secrets.toml` (working from CLI), or in the GitHub `Settings > Secrets and variables` (working from GitHub App or GitHub Action):
|
||||
```
|
||||
|
||||
```toml
|
||||
[openai]
|
||||
key = "" # your azure api key
|
||||
api_type = "azure"
|
||||
@ -28,26 +30,29 @@ deployment_id = "" # The deployment name you chose when you deployed the engine
|
||||
```
|
||||
|
||||
and set in your configuration file:
|
||||
```
|
||||
|
||||
```toml
|
||||
[config]
|
||||
model="" # the OpenAI model you've deployed on Azure (e.g. gpt-4o)
|
||||
fallback_models=["..."]
|
||||
```
|
||||
|
||||
Passing custom headers to the underlying LLM Model API can be done by setting extra_headers parameter to litellm.
|
||||
```
|
||||
|
||||
```toml
|
||||
[litellm]
|
||||
extra_headers='{"projectId": "<authorized projectId >", ...}') #The value of this setting should be a JSON string representing the desired headers, a ValueError is thrown otherwise.
|
||||
```
|
||||
This enables users to pass authorization tokens or API keys, when routing requests through an API management gateway.
|
||||
|
||||
This enables users to pass authorization tokens or API keys, when routing requests through an API management gateway.
|
||||
|
||||
### Ollama
|
||||
|
||||
You can run models locally through either [VLLM](https://docs.litellm.ai/docs/providers/vllm) or [Ollama](https://docs.litellm.ai/docs/providers/ollama)
|
||||
|
||||
E.g. to use a new model locally via Ollama, set in `.secrets.toml` or in a configuration file:
|
||||
```
|
||||
|
||||
```toml
|
||||
[config]
|
||||
model = "ollama/qwen2.5-coder:32b"
|
||||
fallback_models=["ollama/qwen2.5-coder:32b"]
|
||||
@ -74,7 +79,8 @@ Please note that the `custom_model_max_tokens` setting should be configured in a
|
||||
### Hugging Face
|
||||
|
||||
To use a new model with Hugging Face Inference Endpoints, for example, set:
|
||||
```
|
||||
|
||||
```toml
|
||||
[config] # in configuration.toml
|
||||
model = "huggingface/meta-llama/Llama-2-7b-chat-hf"
|
||||
fallback_models=["huggingface/meta-llama/Llama-2-7b-chat-hf"]
|
||||
@ -84,39 +90,44 @@ custom_model_max_tokens=... # set the maximal input tokens for the model
|
||||
key = ... # your Hugging Face api key
|
||||
api_base = ... # the base url for your Hugging Face inference endpoint
|
||||
```
|
||||
|
||||
(you can obtain a Llama2 key from [here](https://replicate.com/replicate/llama-2-70b-chat/api))
|
||||
|
||||
### Replicate
|
||||
|
||||
To use Llama2 model with Replicate, for example, set:
|
||||
```
|
||||
|
||||
```toml
|
||||
[config] # in configuration.toml
|
||||
model = "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"
|
||||
fallback_models=["replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"]
|
||||
[replicate] # in .secrets.toml
|
||||
key = ...
|
||||
```
|
||||
(you can obtain a Llama2 key from [here](https://replicate.com/replicate/llama-2-70b-chat/api))
|
||||
|
||||
(you can obtain a Llama2 key from [here](https://replicate.com/replicate/llama-2-70b-chat/api))
|
||||
|
||||
Also, review the [AiHandler](https://github.com/Codium-ai/pr-agent/blob/main/pr_agent/algo/ai_handler.py) file for instructions on how to set keys for other models.
|
||||
|
||||
### Groq
|
||||
|
||||
To use Llama3 model with Groq, for example, set:
|
||||
```
|
||||
|
||||
```toml
|
||||
[config] # in configuration.toml
|
||||
model = "llama3-70b-8192"
|
||||
fallback_models = ["groq/llama3-70b-8192"]
|
||||
[groq] # in .secrets.toml
|
||||
key = ... # your Groq api key
|
||||
```
|
||||
|
||||
(you can obtain a Groq key from [here](https://console.groq.com/keys))
|
||||
|
||||
### xAI
|
||||
|
||||
To use xAI's models with PR-Agent, set:
|
||||
```
|
||||
|
||||
```toml
|
||||
[config] # in configuration.toml
|
||||
model = "xai/grok-2-latest"
|
||||
fallback_models = ["xai/grok-2-latest"] # or any other model as fallback
|
||||
@ -131,7 +142,7 @@ You can obtain an xAI API key from [xAI's console](https://console.x.ai/) by cre
|
||||
|
||||
To use Google's Vertex AI platform and its associated models (chat-bison/codechat-bison) set:
|
||||
|
||||
```
|
||||
```toml
|
||||
[config] # in configuration.toml
|
||||
model = "vertex_ai/codechat-bison"
|
||||
fallback_models="vertex_ai/codechat-bison"
|
||||
@ -164,14 +175,15 @@ If you don't want to set the API key in the .secrets.toml file, you can set the
|
||||
|
||||
To use Anthropic models, set the relevant models in the configuration section of the configuration file:
|
||||
|
||||
```
|
||||
```toml
|
||||
[config]
|
||||
model="anthropic/claude-3-opus-20240229"
|
||||
fallback_models=["anthropic/claude-3-opus-20240229"]
|
||||
```
|
||||
|
||||
And also set the api key in the .secrets.toml file:
|
||||
```
|
||||
|
||||
```toml
|
||||
[anthropic]
|
||||
KEY = "..."
|
||||
```
|
||||
@ -182,7 +194,7 @@ See [litellm](https://docs.litellm.ai/docs/providers/anthropic#usage) documentat
|
||||
|
||||
To use Amazon Bedrock and its foundational models, add the below configuration:
|
||||
|
||||
```
|
||||
```toml
|
||||
[config] # in configuration.toml
|
||||
model="bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0"
|
||||
fallback_models=["bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0"]
|
||||
@ -214,17 +226,18 @@ key = ...
|
||||
|
||||
(you can obtain a deepseek-chat key from [here](https://platform.deepseek.com))
|
||||
|
||||
|
||||
### DeepInfra
|
||||
|
||||
To use DeepSeek model with DeepInfra, for example, set:
|
||||
```
|
||||
|
||||
```toml
|
||||
[config] # in configuration.toml
|
||||
model = "deepinfra/deepseek-ai/DeepSeek-R1-Distill-Llama-70B"
|
||||
fallback_models = ["deepinfra/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"]
|
||||
[deepinfra] # in .secrets.toml
|
||||
key = ... # your DeepInfra api key
|
||||
```
|
||||
|
||||
(you can obtain a DeepInfra key from [here](https://deepinfra.com/dash/api_keys))
|
||||
|
||||
### Custom models
|
||||
@ -232,16 +245,20 @@ key = ... # your DeepInfra api key
|
||||
If the relevant model doesn't appear [here](https://github.com/Codium-ai/pr-agent/blob/main/pr_agent/algo/__init__.py), you can still use it as a custom model:
|
||||
|
||||
1. Set the model name in the configuration file:
|
||||
```
|
||||
|
||||
```toml
|
||||
[config]
|
||||
model="custom_model_name"
|
||||
fallback_models=["custom_model_name"]
|
||||
```
|
||||
|
||||
2. Set the maximal tokens for the model:
|
||||
```
|
||||
|
||||
```toml
|
||||
[config]
|
||||
custom_model_max_tokens= ...
|
||||
```
|
||||
|
||||
3. Go to [litellm documentation](https://litellm.vercel.app/docs/proxy/quick_start#supported-llms), find the model you want to use, and set the relevant environment variables.
|
||||
|
||||
4. Most reasoning models do not support chat-style inputs (`system` and `user` messages) or temperature settings.
|
||||
@ -251,14 +268,18 @@ To bypass chat templates and temperature controls, set `config.custom_reasoning_
|
||||
|
||||
### OpenAI models
|
||||
|
||||
```toml
|
||||
[config]
|
||||
reasoning_efffort= = "medium" # "low", "medium", "high"
|
||||
```
|
||||
|
||||
With the OpenAI models that support reasoning effort (eg: o3-mini), you can specify its reasoning effort via `config` section. The default value is `medium`. You can change it to `high` or `low` based on your usage.
|
||||
|
||||
### Anthropic models
|
||||
|
||||
```toml
|
||||
[config]
|
||||
enable_claude_extended_thinking = false # Set to true to enable extended thinking feature
|
||||
extended_thinking_budget_tokens = 2048
|
||||
extended_thinking_max_output_tokens = 4096
|
||||
```
|
||||
|
Reference in New Issue
Block a user