Merge remote-tracking branch 'origin/main' into fix_bitbucket_publish_description

This commit is contained in:
Ori Kotek
2023-09-10 14:08:17 +03:00
13 changed files with 382 additions and 21 deletions

View File

@ -21,7 +21,10 @@ jobs:
id: pragent
uses: Codium-ai/pr-agent@main
env:
OPENAI_KEY: ${{ secrets.OPENAI_KEY }}
OPENAI_ORG: ${{ secrets.OPENAI_ORG }} # optional
OPENAI.KEY: ${{ secrets.OPENAI_KEY }}
OPENAI.ORG: ${{ secrets.OPENAI_ORG }} # optional
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
PINECONE.API_KEY: ${{ secrets.PINECONE_API_KEY }}
PINECONE.ENVIRONMENT: ${{ secrets.PINECONE_ENVIRONMENT }}

View File

@ -50,12 +50,12 @@ When running from your local repo (CLI), your local configuration file will be u
Examples for invoking the different tools via the CLI:
- **Review**: `python cli.py --pr_url=<pr_url> /review`
- **Describe**: `python cli.py --pr_url=<pr_url> /describe`
- **Improve**: `python cli.py --pr_url=<pr_url> /improve`
- **Ask**: `python cli.py --pr_url=<pr_url> /ask "Write me a poem about this PR"`
- **Reflect**: `python cli.py --pr_url=<pr_url> /reflect`
- **Update Changelog**: `python cli.py --pr_url=<pr_url> /update_changelog`
- **Review**: `python cli.py --pr_url=<pr_url> review`
- **Describe**: `python cli.py --pr_url=<pr_url> describe`
- **Improve**: `python cli.py --pr_url=<pr_url> improve`
- **Ask**: `python cli.py --pr_url=<pr_url> ask "Write me a poem about this PR"`
- **Reflect**: `python cli.py --pr_url=<pr_url> reflect`
- **Update Changelog**: `python cli.py --pr_url=<pr_url> update_changelog`
`<pr_url>` is the url of the relevant PR (for example: https://github.com/Codium-ai/pr-agent/pull/50).
@ -169,6 +169,31 @@ in the configuration.toml
#### Huggingface
**Local**
You can run Huggingface models locally through either [VLLM](https://docs.litellm.ai/docs/providers/vllm) or [Ollama](https://docs.litellm.ai/docs/providers/ollama)
E.g. to use a new Huggingface model locally via Ollama, set:
```
[__init__.py]
MAX_TOKENS = {
"model-name-on-ollama": <max_tokens>
}
e.g.
MAX_TOKENS={
...,
"llama2": 4096
}
[config] # in configuration.toml
model = "ollama/llama2"
[ollama] # in .secrets.toml
api_base = ... # the base url for your huggingface inference endpoint
```
**Inference Endpoints**
To use a new model with Huggingface Inference Endpoints, for example, set:
```
[__init__.py]

View File

@ -9,6 +9,7 @@ from pr_agent.git_providers import get_git_provider
from pr_agent.tools.pr_code_suggestions import PRCodeSuggestions
from pr_agent.tools.pr_description import PRDescription
from pr_agent.tools.pr_information_from_user import PRInformationFromUser
from pr_agent.tools.pr_similar_issue import PRSimilarIssue
from pr_agent.tools.pr_questions import PRQuestions
from pr_agent.tools.pr_reviewer import PRReviewer
from pr_agent.tools.pr_update_changelog import PRUpdateChangelog
@ -30,6 +31,7 @@ command2class = {
"update_changelog": PRUpdateChangelog,
"config": PRConfig,
"settings": PRConfig,
"similar_issue": PRSimilarIssue,
}
commands = list(command2class.keys())

View File

@ -1,4 +1,5 @@
MAX_TOKENS = {
'text-embedding-ada-002': 8000,
'gpt-3.5-turbo': 4000,
'gpt-3.5-turbo-0613': 4000,
'gpt-3.5-turbo-0301': 4000,

View File

@ -1,4 +1,5 @@
import logging
import os
import litellm
import openai
@ -24,6 +25,11 @@ class AiHandler:
try:
openai.api_key = get_settings().openai.key
litellm.openai_key = get_settings().openai.key
if get_settings().get("litellm.use_client"):
litellm_token = get_settings().get("litellm.LITELLM_TOKEN")
assert litellm_token, "LITELLM_TOKEN is required"
os.environ["LITELLM_TOKEN"] = litellm_token
litellm.use_client = True
self.azure = False
if get_settings().get("OPENAI.ORG", None):
litellm.organization = get_settings().openai.org

View File

@ -21,7 +21,7 @@ class TokenHandler:
method.
"""
def __init__(self, pr, vars: dict, system, user):
def __init__(self, pr=None, vars: dict = {}, system="", user=""):
"""
Initializes the TokenHandler object.
@ -32,7 +32,8 @@ class TokenHandler:
- user: The user string.
"""
self.encoder = get_token_encoder()
self.prompt_tokens = self._get_system_user_tokens(pr, self.encoder, vars, system, user)
if pr is not None:
self.prompt_tokens = self._get_system_user_tokens(pr, self.encoder, vars, system, user)
def _get_system_user_tokens(self, pr, encoder, vars: dict, system, user):
"""

View File

@ -174,7 +174,7 @@ def fix_json_escape_char(json_message=None):
Raises:
None
"""
"""
try:
result = json.loads(json_message)
except Exception as e:
@ -201,7 +201,7 @@ def convert_str_to_datetime(date_str):
Example:
>>> convert_str_to_datetime('Mon, 01 Jan 2022 12:00:00 UTC')
datetime.datetime(2022, 1, 1, 12, 0, 0)
"""
"""
datetime_format = '%a, %d %b %Y %H:%M:%S %Z'
return datetime.strptime(date_str, datetime_format)

View File

@ -17,6 +17,7 @@ For example:
- cli.py --pr_url=... improve
- cli.py --pr_url=... ask "write me a poem about this PR"
- cli.py --pr_url=... reflect
- cli.py --issue_url=... similar_issue
Supported commands:
-review / review_pr - Add a review that includes a summary of the PR and specific suggestions for improvement.
@ -37,14 +38,22 @@ Configuration:
To edit any configuration parameter from 'configuration.toml', just add -config_path=<value>.
For example: 'python cli.py --pr_url=... review --pr_reviewer.extra_instructions="focus on the file: ..."'
""")
parser.add_argument('--pr_url', type=str, help='The URL of the PR to review', required=True)
parser.add_argument('--pr_url', type=str, help='The URL of the PR to review', default=None)
parser.add_argument('--issue_url', type=str, help='The URL of the Issue to review', default=None)
parser.add_argument('command', type=str, help='The', choices=commands, default='review')
parser.add_argument('rest', nargs=argparse.REMAINDER, default=[])
args = parser.parse_args(inargs)
if not args.pr_url and not args.issue_url:
parser.print_help()
return
logging.basicConfig(level=os.environ.get("LOGLEVEL", "INFO"))
command = args.command.lower()
get_settings().set("CONFIG.CLI_MODE", True)
result = asyncio.run(PRAgent().handle_request(args.pr_url, command + " " + " ".join(args.rest)))
if args.issue_url:
result = asyncio.run(PRAgent().handle_request(args.issue_url, command + " " + " ".join(args.rest)))
else:
result = asyncio.run(PRAgent().handle_request(args.pr_url, command + " " + " ".join(args.rest)))
if not result:
parser.print_help()

View File

@ -32,7 +32,7 @@ class GithubProvider(GitProvider):
self.diff_files = None
self.git_files = None
self.incremental = incremental
if pr_url:
if pr_url and 'pull' in pr_url:
self.set_pr(pr_url)
self.last_commit_id = list(self.pr.get_commits())[-1]
@ -309,6 +309,35 @@ class GithubProvider(GitProvider):
return repo_name, pr_number
@staticmethod
def _parse_issue_url(issue_url: str) -> Tuple[str, int]:
parsed_url = urlparse(issue_url)
if 'github.com' not in parsed_url.netloc:
raise ValueError("The provided URL is not a valid GitHub URL")
path_parts = parsed_url.path.strip('/').split('/')
if 'api.github.com' in parsed_url.netloc:
if len(path_parts) < 5 or path_parts[3] != 'issues':
raise ValueError("The provided URL does not appear to be a GitHub ISSUE URL")
repo_name = '/'.join(path_parts[1:3])
try:
issue_number = int(path_parts[4])
except ValueError as e:
raise ValueError("Unable to convert issue number to integer") from e
return repo_name, issue_number
if len(path_parts) < 4 or path_parts[2] != 'issues':
raise ValueError("The provided URL does not appear to be a GitHub PR issue")
repo_name = '/'.join(path_parts[:2])
try:
issue_number = int(path_parts[3])
except ValueError as e:
raise ValueError("Unable to convert issue number to integer") from e
return repo_name, issue_number
def _get_github_client(self):
deployment_type = get_settings().get("GITHUB.DEPLOYMENT_TYPE", "user")

View File

@ -16,6 +16,10 @@ key = "" # Acquire through https://platform.openai.com
#deployment_id = "" # The deployment name you chose when you deployed the engine
#fallback_deployments = [] # For each fallback model specified in configuration.toml in the [config] section, specify the appropriate deployment_id
[pinecone]
api_key = "..."
environment = "gcp-starter"
[anthropic]
key = "" # Optional, uncomment if you want to use Anthropic. Acquire through https://www.anthropic.com/
@ -29,6 +33,9 @@ key = "" # Optional, uncomment if you want to use Replicate. Acquire through htt
key = "" # Optional, uncomment if you want to use Huggingface Inference API. Acquire through https://huggingface.co/docs/api-inference/quicktour
api_base = "" # the base url for your huggingface inference endpoint
[ollama]
api_base = "" # the base url for your huggingface inference endpoint
[github]
# ---- Set the following only for deployment type == "user"
user_token = "" # A GitHub personal access token with 'repo' scope.
@ -55,3 +62,5 @@ bearer_token = ""
app_key = ""
base_url = ""
[litellm]
LITELLM_TOKEN = "" # see https://docs.litellm.ai/docs/debugging/hosted_debugging for details and instructions on how to get a token

View File

@ -94,3 +94,16 @@ polling_interval_seconds = 30
# patch_server_endpoint = "http://127.0.0.1:5000/patch"
# token to authenticate in the patch server
# patch_server_token = ""
[litellm]
#use_client = false
[pr_similar_issue]
skip_comments = false
force_update_dataset = false
max_issues_to_scan = 500
[pinecone]
# fill and place in .secrets.toml
#api_key = ...
# environment = "gcp-starter"

View File

@ -0,0 +1,261 @@
import copy
import json
import logging
from enum import Enum
from typing import List, Tuple
import pinecone
import openai
import pandas as pd
from pydantic import BaseModel, Field
from pr_agent.algo import MAX_TOKENS
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.config_loader import get_settings
from pr_agent.git_providers import get_git_provider
from pinecone_datasets import Dataset, DatasetMetadata
MODEL = "text-embedding-ada-002"
class PRSimilarIssue:
def __init__(self, issue_url: str, args: list = None):
if get_settings().config.git_provider != "github":
raise Exception("Only github is supported for similar issue tool")
self.cli_mode = get_settings().CONFIG.CLI_MODE
self.max_issues_to_scan = get_settings().pr_similar_issue.max_issues_to_scan
self.issue_url = issue_url
self.git_provider = get_git_provider()()
repo_name, issue_number = self.git_provider._parse_issue_url(issue_url.split('=')[-1])
self.git_provider.repo = repo_name
self.git_provider.repo_obj = self.git_provider.github_client.get_repo(repo_name)
self.token_handler = TokenHandler()
repo_obj = self.git_provider.repo_obj
repo_name_for_index = self.repo_name_for_index = repo_obj.full_name.lower().replace('/', '-').replace('_/', '-')
index_name = self.index_name = "codium-ai-pr-agent-issues"
# assuming pinecone api key and environment are set in secrets file
try:
api_key = get_settings().pinecone.api_key
environment = get_settings().pinecone.environment
except Exception:
if not self.cli_mode:
repo_name, original_issue_number = self.git_provider._parse_issue_url(self.issue_url.split('=')[-1])
issue_main = self.git_provider.repo_obj.get_issue(original_issue_number)
issue_main.create_comment("Please set pinecone api key and environment in secrets file")
raise Exception("Please set pinecone api key and environment in secrets file")
# check if index exists, and if repo is already indexed
run_from_scratch = False
upsert = True
pinecone.init(api_key=api_key, environment=environment)
if not index_name in pinecone.list_indexes():
run_from_scratch = True
upsert = False
else:
if get_settings().pr_similar_issue.force_update_dataset:
upsert = True
else:
pinecone_index = pinecone.Index(index_name=index_name)
res = pinecone_index.fetch([f"example_issue_{repo_name_for_index}"]).to_dict()
if res["vectors"]:
upsert = False
if run_from_scratch or upsert: # index the entire repo
logging.info('Indexing the entire repo...')
logging.info('Getting issues...')
issues = list(repo_obj.get_issues(state='all'))
logging.info('Done')
self._update_index_with_issues(issues, repo_name_for_index, upsert=upsert)
else: # update index if needed
pinecone_index = pinecone.Index(index_name=index_name)
issues_to_update = []
issues_paginated_list = repo_obj.get_issues(state='all')
counter = 1
for issue in issues_paginated_list:
if issue.pull_request:
continue
issue_str, comments, number = self._process_issue(issue)
issue_key = f"issue_{number}"
id = issue_key + "." + "issue"
res = pinecone_index.fetch([id]).to_dict()
is_new_issue = True
for vector in res["vectors"].values():
if vector['metadata']['repo'] == repo_name_for_index:
is_new_issue = False
break
if is_new_issue:
counter += 1
issues_to_update.append(issue)
else:
break
if issues_to_update:
logging.info(f'Updating index with {counter} new issues...')
self._update_index_with_issues(issues_to_update, repo_name_for_index, upsert=True)
else:
logging.info('No new issues to update')
async def run(self):
repo_name, original_issue_number = self.git_provider._parse_issue_url(self.issue_url.split('=')[-1])
issue_main = self.git_provider.repo_obj.get_issue(original_issue_number)
issue_str, comments, number = self._process_issue(issue_main)
openai.api_key = get_settings().openai.key
res = openai.Embedding.create(input=[issue_str], engine=MODEL)
embeds = [record['embedding'] for record in res['data']]
pinecone_index = pinecone.Index(index_name=self.index_name)
res = pinecone_index.query(embeds[0],
top_k=5,
filter={"repo": self.repo_name_for_index},
include_metadata=True).to_dict()
relevant_issues_number_list = []
for r in res['matches']:
issue_number = int(r["id"].split('.')[0].split('_')[-1])
if original_issue_number == issue_number:
continue
if issue_number not in relevant_issues_number_list:
relevant_issues_number_list.append(issue_number)
similar_issues_str = "Similar Issues:\n\n"
for i, issue_number_similar in enumerate(relevant_issues_number_list):
issue = self.git_provider.repo_obj.get_issue(issue_number_similar)
title = issue.title
url = issue.html_url
similar_issues_str += f"{i + 1}. [{title}]({url})\n\n"
if get_settings().config.publish_output:
response = issue_main.create_comment(similar_issues_str)
logging.info(similar_issues_str)
def _process_issue(self, issue):
header = issue.title
body = issue.body
number = issue.number
if get_settings().pr_similar_issue.skip_comments:
comments = []
else:
comments = list(issue.get_comments())
issue_str = f"Issue Header: \"{header}\"\n\nIssue Body:\n{body}"
return issue_str, comments, number
def _update_index_with_issues(self, issues_list, repo_name_for_index, upsert=False):
logging.info('Processing issues...')
corpus = Corpus()
example_issue_record = Record(
id=f"example_issue_{repo_name_for_index}",
text="example_issue",
metadata=Metadata(repo=repo_name_for_index)
)
corpus.append(example_issue_record)
counter = 0
for issue in issues_list:
if issue.pull_request:
continue
counter += 1
if counter % 100 == 0:
logging.info(f"Scanned {counter} issues")
if counter >= self.max_issues_to_scan:
logging.info(f"Scanned {self.max_issues_to_scan} issues, stopping")
break
issue_str, comments, number = self._process_issue(issue)
issue_key = f"issue_{number}"
username = issue.user.login
created_at = str(issue.created_at)
if len(issue_str) < 8000 or \
self.token_handler.count_tokens(issue_str) < MAX_TOKENS[MODEL]: # fast reject first
issue_record = Record(
id=issue_key + "." + "issue",
text=issue_str,
metadata=Metadata(repo=repo_name_for_index,
username=username,
created_at=created_at,
level=IssueLevel.ISSUE)
)
corpus.append(issue_record)
if comments:
for j, comment in enumerate(comments):
comment_body = comment.body
num_words_comment = len(comment_body.split())
if num_words_comment < 10 or not isinstance(comment_body, str):
continue
if len(comment_body) < 8000 or \
self.token_handler.count_tokens(comment_body) < MAX_TOKENS[MODEL]:
comment_record = Record(
id=issue_key + ".comment_" + str(j + 1),
text=comment_body,
metadata=Metadata(repo=repo_name_for_index,
username=username, # use issue username for all comments
created_at=created_at,
level=IssueLevel.COMMENT)
)
corpus.append(comment_record)
df = pd.DataFrame(corpus.dict()["documents"])
logging.info('Done')
logging.info('Embedding...')
openai.api_key = get_settings().openai.key
list_to_encode = list(df["text"].values)
try:
res = openai.Embedding.create(input=list_to_encode, engine=MODEL)
embeds = [record['embedding'] for record in res['data']]
except:
embeds = []
logging.error('Failed to embed entire list, embedding one by one...')
for i, text in enumerate(list_to_encode):
try:
res = openai.Embedding.create(input=[text], engine=MODEL)
embeds.append(res['data'][0]['embedding'])
except:
embeds.append([0] * 1536)
df["values"] = embeds
meta = DatasetMetadata.empty()
meta.dense_model.dimension = len(embeds[0])
ds = Dataset.from_pandas(df, meta)
logging.info('Done')
api_key = get_settings().pinecone.api_key
environment = get_settings().pinecone.environment
if not upsert:
logging.info('Creating index from scratch...')
ds.to_pinecone_index(self.index_name, api_key=api_key, environment=environment)
else:
logging.info('Upserting index...')
namespace = ""
batch_size: int = 100
concurrency: int = 10
pinecone.init(api_key=api_key, environment=environment)
ds._upsert_to_index(self.index_name, namespace, batch_size, concurrency)
logging.info('Done')
class IssueLevel(str, Enum):
ISSUE = "issue"
COMMENT = "comment"
class Metadata(BaseModel):
repo: str
username: str = Field(default="@codium")
created_at: str = Field(default="01-01-1970 00:00:00.00000")
level: IssueLevel = Field(default=IssueLevel.ISSUE)
class Config:
use_enum_values = True
class Record(BaseModel):
id: str
text: str
metadata: Metadata
class Corpus(BaseModel):
documents: List[Record] = Field(default=[])
def append(self, r: Record):
self.documents.append(r)

View File

@ -7,15 +7,17 @@ Jinja2==3.1.2
tiktoken==0.4.0
uvicorn==0.22.0
python-gitlab==3.15.0
pytest~=7.4.0
aiohttp~=3.8.4
pytest==7.4.0
aiohttp==3.8.4
atlassian-python-api==3.39.0
GitPython~=3.1.32
GitPython==3.1.32
PyYAML==6.0
starlette-context==0.3.6
litellm~=0.1.538
boto3~=1.28.25
litellm~=0.1.574
boto3==1.28.25
google-cloud-storage==2.10.0
ujson==5.8.0
azure-devops==7.1.0b3
msrest==0.7.1
msrest==0.7.1
pinecone-client
pinecone-datasets @ git+https://github.com/mrT23/pinecone-datasets.git@main