More comprehensive handling in count_tokens(force_accurate==True): In case model is neither OpenAI nor Anthropic Claude, simply use an elbow room factor in order to force a more conservative estimate.

This commit is contained in:
Eyal Sharon
2025-03-24 15:47:35 +02:00
parent fb324d106c
commit 8495e4d549

View File

@ -1,6 +1,7 @@
from threading import Lock
from jinja2 import Environment, StrictUndefined
from math import ceil
from tiktoken import encoding_for_model, get_encoding
from pr_agent.config_loader import get_settings
@ -114,6 +115,22 @@ class TokenHandler:
Returns:
The number of tokens in the patch string.
"""
if force_accurate and 'claude' in get_settings().config.model.lower() and get_settings(use_context=False).get('anthropic.key'):
encoder_estimate = len(self.encoder.encode(patch, disallowed_special=()))
if not force_accurate:
return encoder_estimate
#else, need to provide an accurate estimation:
model = get_settings().config.model.lower()
if force_accurate and 'claude' in model and get_settings(use_context=False).get('anthropic.key'):
return self.calc_claude_tokens(patch) # API call to Anthropic for accurate token counting for Claude models
return len(self.encoder.encode(patch, disallowed_special=()))
#else: Non Anthropic provided model
import re
model_is_from_o_series = re.match(r"^o[1-9](-mini|-preview)?$", model)
if ('gpt' in get_settings().config.model.lower() or model_is_from_o_series) and get_settings(use_context=False).get('openai.key'):
return encoder_estimate
#else: Model is neither an OpenAI, nor an Anthropic model - therefore, cannot provide an accurate token count and instead, return a higher number as best effort.
elbow_factor = 1 + get_settings().get('config.model_token_count_estimate_factor', 0)
get_logger().warning(f"{model}'s expected token count cannot be accurately estimated. Using {elbow_factor} of encoder output as best effort estimate")
return ceil(elbow_factor * encoder_estimate)