Add model name validation

This commit is contained in:
kkan9ma
2025-05-20 13:47:15 +09:00
parent 05ab5f699f
commit 81fa22e4df

View File

@ -1,4 +1,6 @@
from threading import Lock
from math import ceil
import re
from jinja2 import Environment, StrictUndefined
from tiktoken import encoding_for_model, get_encoding
@ -7,6 +9,16 @@ from pr_agent.config_loader import get_settings
from pr_agent.log import get_logger
class ModelTypeValidator:
@staticmethod
def is_openai_model(model_name: str) -> bool:
return 'gpt' in model_name or re.match(r"^o[1-9](-mini|-preview)?$", model_name)
@staticmethod
def is_claude_model(model_name: str) -> bool:
return 'claude' in model_name
class TokenEncoder:
_encoder_instance = None
_model = None
@ -51,6 +63,9 @@ class TokenHandler:
- user: The user string.
"""
self.encoder = TokenEncoder.get_token_encoder()
self.settings = get_settings()
self.model_validator = ModelTypeValidator()
if pr is not None:
self.prompt_tokens = self._get_system_user_tokens(pr, self.encoder, vars, system, user)
@ -79,19 +94,20 @@ class TokenHandler:
get_logger().error(f"Error in _get_system_user_tokens: {e}")
return 0
def calc_claude_tokens(self, patch):
def calc_claude_tokens(self, patch: str) -> int:
try:
import anthropic
from pr_agent.algo import MAX_TOKENS
client = anthropic.Anthropic(api_key=get_settings(use_context=False).get('anthropic.key'))
MaxTokens = MAX_TOKENS[get_settings().config.model]
client = anthropic.Anthropic(api_key=self.settings.get('anthropic.key'))
max_tokens = MAX_TOKENS[self.settings.config.model]
# Check if the content size is too large (9MB limit)
if len(patch.encode('utf-8')) > 9_000_000:
get_logger().warning(
"Content too large for Anthropic token counting API, falling back to local tokenizer"
)
return MaxTokens
return max_tokens
response = client.messages.count_tokens(
model="claude-3-7-sonnet-20250219",
@ -104,29 +120,21 @@ class TokenHandler:
return response.input_tokens
except Exception as e:
get_logger().error( f"Error in Anthropic token counting: {e}")
return MaxTokens
get_logger().error(f"Error in Anthropic token counting: {e}")
return max_tokens
def is_openai_model(self, model_name):
from re import match
return 'gpt' in model_name or match(r"^o[1-9](-mini|-preview)?$", model_name)
def apply_estimation_factor(self, model_name, default_estimate):
from math import ceil
factor = 1 + get_settings().get('config.model_token_count_estimate_factor', 0)
def apply_estimation_factor(self, model_name: str, default_estimate: int) -> int:
factor = 1 + self.settings.get('config.model_token_count_estimate_factor', 0)
get_logger().warning(f"{model_name}'s token count cannot be accurately estimated. Using factor of {factor}")
return ceil(factor * default_estimate)
def get_token_count_by_model_type(self, patch: str, default_estimate: int) -> int:
model_name = get_settings().config.model.lower()
if 'claude' in model_name and get_settings(use_context=False).get('anthropic.key'):
if self.model_validator.is_claude_model(model_name) and get_settings(use_context=False).get('anthropic.key'):
return self.calc_claude_tokens(patch)
if self.is_openai_model(model_name) and get_settings(use_context=False).get('openai.key'):
if self.model_validator.is_openai_model(model_name) and get_settings(use_context=False).get('openai.key'):
return default_estimate
return self.apply_estimation_factor(model_name, default_estimate)