Move ai handlers to specific folder

This commit is contained in:
Brian Pham
2023-12-12 23:03:38 +08:00
parent 5239e1c3e9
commit 7eb2e769cf
11 changed files with 12 additions and 12 deletions

View File

@ -0,0 +1,122 @@
import os
import litellm
import openai
from litellm import acompletion
from openai.error import APIError, RateLimitError, Timeout, TryAgain
from retry import retry
from pr_agent.config_loader import get_settings
from pr_agent.log import get_logger
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
OPENAI_RETRIES = 5
class LiteLLMAiHandler(BaseAiHandler):
"""
This class handles interactions with the OpenAI API for chat completions.
It initializes the API key and other settings from a configuration file,
and provides a method for performing chat completions using the OpenAI ChatCompletion API.
"""
def __init__(self):
"""
Initializes the OpenAI API key and other settings from a configuration file.
Raises a ValueError if the OpenAI key is missing.
"""
try:
openai.api_key = get_settings().openai.key
litellm.openai_key = get_settings().openai.key
if get_settings().get("litellm.use_client"):
litellm_token = get_settings().get("litellm.LITELLM_TOKEN")
assert litellm_token, "LITELLM_TOKEN is required"
os.environ["LITELLM_TOKEN"] = litellm_token
litellm.use_client = True
self.azure = False
if get_settings().get("OPENAI.ORG", None):
litellm.organization = get_settings().openai.org
if get_settings().get("OPENAI.API_TYPE", None):
if get_settings().openai.api_type == "azure":
self.azure = True
litellm.azure_key = get_settings().openai.key
if get_settings().get("OPENAI.API_VERSION", None):
litellm.api_version = get_settings().openai.api_version
if get_settings().get("OPENAI.API_BASE", None):
litellm.api_base = get_settings().openai.api_base
if get_settings().get("ANTHROPIC.KEY", None):
litellm.anthropic_key = get_settings().anthropic.key
if get_settings().get("COHERE.KEY", None):
litellm.cohere_key = get_settings().cohere.key
if get_settings().get("REPLICATE.KEY", None):
litellm.replicate_key = get_settings().replicate.key
if get_settings().get("REPLICATE.KEY", None):
litellm.replicate_key = get_settings().replicate.key
if get_settings().get("HUGGINGFACE.KEY", None):
litellm.huggingface_key = get_settings().huggingface.key
if get_settings().get("HUGGINGFACE.API_BASE", None):
litellm.api_base = get_settings().huggingface.api_base
except AttributeError as e:
raise ValueError("OpenAI key is required") from e
@property
def deployment_id(self):
"""
Returns the deployment ID for the OpenAI API.
"""
return get_settings().get("OPENAI.DEPLOYMENT_ID", None)
@retry(exceptions=(APIError, Timeout, TryAgain, AttributeError, RateLimitError),
tries=OPENAI_RETRIES, delay=2, backoff=2, jitter=(1, 3))
async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2):
"""
Performs a chat completion using the OpenAI ChatCompletion API.
Retries in case of API errors or timeouts.
Args:
model (str): The model to use for chat completion.
temperature (float): The temperature parameter for chat completion.
system (str): The system message for chat completion.
user (str): The user message for chat completion.
Returns:
tuple: A tuple containing the response and finish reason from the API.
Raises:
TryAgain: If the API response is empty or there are no choices in the response.
APIError: If there is an error during OpenAI inference.
Timeout: If there is a timeout during OpenAI inference.
TryAgain: If there is an attribute error during OpenAI inference.
"""
try:
deployment_id = self.deployment_id
if get_settings().config.verbosity_level >= 2:
get_logger().debug(
f"Generating completion with {model}"
f"{(' from deployment ' + deployment_id) if deployment_id else ''}"
)
if self.azure:
model = 'azure/' + model
messages = [{"role": "system", "content": system}, {"role": "user", "content": user}]
response = await acompletion(
model=model,
deployment_id=deployment_id,
messages=messages,
temperature=temperature,
force_timeout=get_settings().config.ai_timeout
)
except (APIError, Timeout, TryAgain) as e:
get_logger().error("Error during OpenAI inference: ", e)
raise
except (RateLimitError) as e:
get_logger().error("Rate limit error during OpenAI inference: ", e)
raise
except (Exception) as e:
get_logger().error("Unknown error during OpenAI inference: ", e)
raise TryAgain from e
if response is None or len(response["choices"]) == 0:
raise TryAgain
resp = response["choices"][0]['message']['content']
finish_reason = response["choices"][0]["finish_reason"]
usage = response.get("usage")
get_logger().info("AI response", response=resp, messages=messages, finish_reason=finish_reason,
model=model, usage=usage)
return resp, finish_reason