Merge pull request #1828 from Akileox/refactor-langchain-handler

Refactor: Enhance AI Handler Robustness, Interface Compliance, and Asynchronous Operations (Resolves #1784)
This commit is contained in:
Tal
2025-05-28 08:20:04 +03:00
committed by GitHub
3 changed files with 155 additions and 36 deletions

View File

@ -1,6 +1,9 @@
_LANGCHAIN_INSTALLED = False
try:
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import AzureChatOpenAI, ChatOpenAI
_LANGCHAIN_INSTALLED = True
except: # we don't enforce langchain as a dependency, so if it's not installed, just move on
pass
@ -8,6 +11,7 @@ import functools
import openai
from tenacity import retry, retry_if_exception_type, retry_if_not_exception_type, stop_after_attempt
from langchain_core.runnables import Runnable
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
from pr_agent.config_loader import get_settings
@ -18,17 +22,14 @@ OPENAI_RETRIES = 5
class LangChainOpenAIHandler(BaseAiHandler):
def __init__(self):
# Initialize OpenAIHandler specific attributes here
if not _LANGCHAIN_INSTALLED:
error_msg = "LangChain is not installed. Please install it with `pip install langchain`."
get_logger().error(error_msg)
raise ImportError(error_msg)
super().__init__()
self.azure = get_settings().get("OPENAI.API_TYPE", "").lower() == "azure"
# Create a default unused chat object to trigger early validation
self._create_chat(self.deployment_id)
def chat(self, messages: list, model: str, temperature: float):
chat = self._create_chat(self.deployment_id)
return chat.invoke(input=messages, model=model, temperature=temperature)
@property
def deployment_id(self):
"""
@ -36,16 +37,66 @@ class LangChainOpenAIHandler(BaseAiHandler):
"""
return get_settings().get("OPENAI.DEPLOYMENT_ID", None)
async def _create_chat_async(self, deployment_id=None):
try:
if self.azure:
# Using Azure OpenAI service
return AzureChatOpenAI(
openai_api_key=get_settings().openai.key,
openai_api_version=get_settings().openai.api_version,
azure_deployment=deployment_id,
azure_endpoint=get_settings().openai.api_base,
)
else:
# Using standard OpenAI or other LLM services
openai_api_base = get_settings().get("OPENAI.API_BASE", None)
if openai_api_base is None or len(openai_api_base) == 0:
return ChatOpenAI(openai_api_key=get_settings().openai.key)
else:
return ChatOpenAI(
openai_api_key=get_settings().openai.key,
openai_api_base=openai_api_base
)
except AttributeError as e:
# Handle configuration errors
error_msg = f"OpenAI {e.name} is required" if getattr(e, "name") else str(e)
get_logger().error(error_msg)
raise ValueError(error_msg) from e
@retry(
retry=retry_if_exception_type(openai.APIError) & retry_if_not_exception_type(openai.RateLimitError),
stop=stop_after_attempt(OPENAI_RETRIES),
)
async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2):
async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2, img_path: str = None):
if img_path:
get_logger().warning(f"Image path is not supported for LangChainOpenAIHandler. Ignoring image path: {img_path}")
try:
messages = [SystemMessage(content=system), HumanMessage(content=user)]
llm = await self._create_chat_async(deployment_id=self.deployment_id)
if not isinstance(llm, Runnable):
error_message = (
f"The Langchain LLM object ({type(llm)}) does not implement the Runnable interface. "
f"Please update your Langchain library to the latest version or "
f"check your LLM configuration to support async calls. "
f"PR-Agent is designed to utilize Langchain's async capabilities."
)
get_logger().error(error_message)
raise NotImplementedError(error_message)
# Handle parameters based on LLM type
if isinstance(llm, (ChatOpenAI, AzureChatOpenAI)):
# OpenAI models support all parameters
resp = await llm.ainvoke(
input=messages,
model=model,
temperature=temperature
)
else:
# Other LLMs (like Gemini) only support input parameter
get_logger().info(f"Using simplified ainvoke for {type(llm)}")
resp = await llm.ainvoke(input=messages)
# get a chat completion from the formatted messages
resp = self.chat(messages, model=model, temperature=temperature)
finish_reason = "completed"
return resp.content, finish_reason
@ -58,27 +109,3 @@ class LangChainOpenAIHandler(BaseAiHandler):
except Exception as e:
get_logger().warning(f"Unknown error during LLM inference: {e}")
raise openai.APIError from e
def _create_chat(self, deployment_id=None):
try:
if self.azure:
# using a partial function so we can set the deployment_id later to support fallback_deployments
# but still need to access the other settings now so we can raise a proper exception if they're missing
return AzureChatOpenAI(
openai_api_key=get_settings().openai.key,
openai_api_version=get_settings().openai.api_version,
azure_deployment=deployment_id,
azure_endpoint=get_settings().openai.api_base,
)
else:
# for llms that compatible with openai, should use custom api base
openai_api_base = get_settings().get("OPENAI.API_BASE", None)
if openai_api_base is None or len(openai_api_base) == 0:
return ChatOpenAI(openai_api_key=get_settings().openai.key)
else:
return ChatOpenAI(openai_api_key=get_settings().openai.key, openai_api_base=openai_api_base)
except AttributeError as e:
if getattr(e, "name"):
raise ValueError(f"OpenAI {e.name} is required") from e
else:
raise e

View File

@ -42,8 +42,10 @@ class OpenAIHandler(BaseAiHandler):
retry=retry_if_exception_type(openai.APIError) & retry_if_not_exception_type(openai.RateLimitError),
stop=stop_after_attempt(OPENAI_RETRIES),
)
async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2):
async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2, img_path: str = None):
try:
if img_path:
get_logger().warning(f"Image path is not supported for OpenAIHandler. Ignoring image path: {img_path}")
get_logger().info("System: ", system)
get_logger().info("User: ", user)
messages = [{"role": "system", "content": system}, {"role": "user", "content": user}]