mirror of
https://github.com/qodo-ai/pr-agent.git
synced 2025-07-03 04:10:49 +08:00
Merge pull request #1828 from Akileox/refactor-langchain-handler
Refactor: Enhance AI Handler Robustness, Interface Compliance, and Asynchronous Operations (Resolves #1784)
This commit is contained in:
@ -1,6 +1,9 @@
|
||||
_LANGCHAIN_INSTALLED = False
|
||||
|
||||
try:
|
||||
from langchain_core.messages import HumanMessage, SystemMessage
|
||||
from langchain_openai import AzureChatOpenAI, ChatOpenAI
|
||||
_LANGCHAIN_INSTALLED = True
|
||||
except: # we don't enforce langchain as a dependency, so if it's not installed, just move on
|
||||
pass
|
||||
|
||||
@ -8,6 +11,7 @@ import functools
|
||||
|
||||
import openai
|
||||
from tenacity import retry, retry_if_exception_type, retry_if_not_exception_type, stop_after_attempt
|
||||
from langchain_core.runnables import Runnable
|
||||
|
||||
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
|
||||
from pr_agent.config_loader import get_settings
|
||||
@ -18,17 +22,14 @@ OPENAI_RETRIES = 5
|
||||
|
||||
class LangChainOpenAIHandler(BaseAiHandler):
|
||||
def __init__(self):
|
||||
# Initialize OpenAIHandler specific attributes here
|
||||
if not _LANGCHAIN_INSTALLED:
|
||||
error_msg = "LangChain is not installed. Please install it with `pip install langchain`."
|
||||
get_logger().error(error_msg)
|
||||
raise ImportError(error_msg)
|
||||
|
||||
super().__init__()
|
||||
self.azure = get_settings().get("OPENAI.API_TYPE", "").lower() == "azure"
|
||||
|
||||
# Create a default unused chat object to trigger early validation
|
||||
self._create_chat(self.deployment_id)
|
||||
|
||||
def chat(self, messages: list, model: str, temperature: float):
|
||||
chat = self._create_chat(self.deployment_id)
|
||||
return chat.invoke(input=messages, model=model, temperature=temperature)
|
||||
|
||||
@property
|
||||
def deployment_id(self):
|
||||
"""
|
||||
@ -36,16 +37,66 @@ class LangChainOpenAIHandler(BaseAiHandler):
|
||||
"""
|
||||
return get_settings().get("OPENAI.DEPLOYMENT_ID", None)
|
||||
|
||||
async def _create_chat_async(self, deployment_id=None):
|
||||
try:
|
||||
if self.azure:
|
||||
# Using Azure OpenAI service
|
||||
return AzureChatOpenAI(
|
||||
openai_api_key=get_settings().openai.key,
|
||||
openai_api_version=get_settings().openai.api_version,
|
||||
azure_deployment=deployment_id,
|
||||
azure_endpoint=get_settings().openai.api_base,
|
||||
)
|
||||
else:
|
||||
# Using standard OpenAI or other LLM services
|
||||
openai_api_base = get_settings().get("OPENAI.API_BASE", None)
|
||||
if openai_api_base is None or len(openai_api_base) == 0:
|
||||
return ChatOpenAI(openai_api_key=get_settings().openai.key)
|
||||
else:
|
||||
return ChatOpenAI(
|
||||
openai_api_key=get_settings().openai.key,
|
||||
openai_api_base=openai_api_base
|
||||
)
|
||||
except AttributeError as e:
|
||||
# Handle configuration errors
|
||||
error_msg = f"OpenAI {e.name} is required" if getattr(e, "name") else str(e)
|
||||
get_logger().error(error_msg)
|
||||
raise ValueError(error_msg) from e
|
||||
|
||||
@retry(
|
||||
retry=retry_if_exception_type(openai.APIError) & retry_if_not_exception_type(openai.RateLimitError),
|
||||
stop=stop_after_attempt(OPENAI_RETRIES),
|
||||
)
|
||||
async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2):
|
||||
async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2, img_path: str = None):
|
||||
if img_path:
|
||||
get_logger().warning(f"Image path is not supported for LangChainOpenAIHandler. Ignoring image path: {img_path}")
|
||||
try:
|
||||
messages = [SystemMessage(content=system), HumanMessage(content=user)]
|
||||
llm = await self._create_chat_async(deployment_id=self.deployment_id)
|
||||
|
||||
if not isinstance(llm, Runnable):
|
||||
error_message = (
|
||||
f"The Langchain LLM object ({type(llm)}) does not implement the Runnable interface. "
|
||||
f"Please update your Langchain library to the latest version or "
|
||||
f"check your LLM configuration to support async calls. "
|
||||
f"PR-Agent is designed to utilize Langchain's async capabilities."
|
||||
)
|
||||
get_logger().error(error_message)
|
||||
raise NotImplementedError(error_message)
|
||||
|
||||
# Handle parameters based on LLM type
|
||||
if isinstance(llm, (ChatOpenAI, AzureChatOpenAI)):
|
||||
# OpenAI models support all parameters
|
||||
resp = await llm.ainvoke(
|
||||
input=messages,
|
||||
model=model,
|
||||
temperature=temperature
|
||||
)
|
||||
else:
|
||||
# Other LLMs (like Gemini) only support input parameter
|
||||
get_logger().info(f"Using simplified ainvoke for {type(llm)}")
|
||||
resp = await llm.ainvoke(input=messages)
|
||||
|
||||
# get a chat completion from the formatted messages
|
||||
resp = self.chat(messages, model=model, temperature=temperature)
|
||||
finish_reason = "completed"
|
||||
return resp.content, finish_reason
|
||||
|
||||
@ -58,27 +109,3 @@ class LangChainOpenAIHandler(BaseAiHandler):
|
||||
except Exception as e:
|
||||
get_logger().warning(f"Unknown error during LLM inference: {e}")
|
||||
raise openai.APIError from e
|
||||
|
||||
def _create_chat(self, deployment_id=None):
|
||||
try:
|
||||
if self.azure:
|
||||
# using a partial function so we can set the deployment_id later to support fallback_deployments
|
||||
# but still need to access the other settings now so we can raise a proper exception if they're missing
|
||||
return AzureChatOpenAI(
|
||||
openai_api_key=get_settings().openai.key,
|
||||
openai_api_version=get_settings().openai.api_version,
|
||||
azure_deployment=deployment_id,
|
||||
azure_endpoint=get_settings().openai.api_base,
|
||||
)
|
||||
else:
|
||||
# for llms that compatible with openai, should use custom api base
|
||||
openai_api_base = get_settings().get("OPENAI.API_BASE", None)
|
||||
if openai_api_base is None or len(openai_api_base) == 0:
|
||||
return ChatOpenAI(openai_api_key=get_settings().openai.key)
|
||||
else:
|
||||
return ChatOpenAI(openai_api_key=get_settings().openai.key, openai_api_base=openai_api_base)
|
||||
except AttributeError as e:
|
||||
if getattr(e, "name"):
|
||||
raise ValueError(f"OpenAI {e.name} is required") from e
|
||||
else:
|
||||
raise e
|
||||
|
@ -42,8 +42,10 @@ class OpenAIHandler(BaseAiHandler):
|
||||
retry=retry_if_exception_type(openai.APIError) & retry_if_not_exception_type(openai.RateLimitError),
|
||||
stop=stop_after_attempt(OPENAI_RETRIES),
|
||||
)
|
||||
async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2):
|
||||
async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2, img_path: str = None):
|
||||
try:
|
||||
if img_path:
|
||||
get_logger().warning(f"Image path is not supported for OpenAIHandler. Ignoring image path: {img_path}")
|
||||
get_logger().info("System: ", system)
|
||||
get_logger().info("User: ", user)
|
||||
messages = [{"role": "system", "content": system}, {"role": "user", "content": user}]
|
||||
|
Reference in New Issue
Block a user