mirror of
https://github.com/qodo-ai/pr-agent.git
synced 2025-07-15 02:00:39 +08:00
Merge pull request #1925 from Makonike/feature_only_streaming_model_support
feat: Support Only Streaming Model
This commit is contained in:
@ -45,6 +45,7 @@ MAX_TOKENS = {
|
||||
'command-nightly': 4096,
|
||||
'deepseek/deepseek-chat': 128000, # 128K, but may be limited by config.max_model_tokens
|
||||
'deepseek/deepseek-reasoner': 64000, # 64K, but may be limited by config.max_model_tokens
|
||||
'openai/qwq-plus': 131072, # 131K context length, but may be limited by config.max_model_tokens
|
||||
'replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1': 4096,
|
||||
'meta-llama/Llama-2-7b-chat-hf': 4096,
|
||||
'vertex_ai/codechat-bison': 6144,
|
||||
@ -193,3 +194,8 @@ CLAUDE_EXTENDED_THINKING_MODELS = [
|
||||
"anthropic/claude-3-7-sonnet-20250219",
|
||||
"claude-3-7-sonnet-20250219"
|
||||
]
|
||||
|
||||
# Models that require streaming mode
|
||||
STREAMING_REQUIRED_MODELS = [
|
||||
"openai/qwq-plus"
|
||||
]
|
||||
|
@ -5,7 +5,7 @@ import requests
|
||||
from litellm import acompletion
|
||||
from tenacity import retry, retry_if_exception_type, retry_if_not_exception_type, stop_after_attempt
|
||||
|
||||
from pr_agent.algo import CLAUDE_EXTENDED_THINKING_MODELS, NO_SUPPORT_TEMPERATURE_MODELS, SUPPORT_REASONING_EFFORT_MODELS, USER_MESSAGE_ONLY_MODELS
|
||||
from pr_agent.algo import CLAUDE_EXTENDED_THINKING_MODELS, NO_SUPPORT_TEMPERATURE_MODELS, SUPPORT_REASONING_EFFORT_MODELS, USER_MESSAGE_ONLY_MODELS, STREAMING_REQUIRED_MODELS
|
||||
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
|
||||
from pr_agent.algo.utils import ReasoningEffort, get_version
|
||||
from pr_agent.config_loader import get_settings
|
||||
@ -15,6 +15,23 @@ import json
|
||||
OPENAI_RETRIES = 5
|
||||
|
||||
|
||||
class MockResponse:
|
||||
"""Mock response object for streaming models to enable consistent logging."""
|
||||
|
||||
def __init__(self, resp, finish_reason):
|
||||
self._data = {
|
||||
"choices": [
|
||||
{
|
||||
"message": {"content": resp},
|
||||
"finish_reason": finish_reason
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
def dict(self):
|
||||
return self._data
|
||||
|
||||
|
||||
class LiteLLMAIHandler(BaseAiHandler):
|
||||
"""
|
||||
This class handles interactions with the OpenAI API for chat completions.
|
||||
@ -143,6 +160,9 @@ class LiteLLMAIHandler(BaseAiHandler):
|
||||
# Models that support extended thinking
|
||||
self.claude_extended_thinking_models = CLAUDE_EXTENDED_THINKING_MODELS
|
||||
|
||||
# Models that require streaming
|
||||
self.streaming_required_models = STREAMING_REQUIRED_MODELS
|
||||
|
||||
def _get_azure_ad_token(self):
|
||||
"""
|
||||
Generates an access token using Azure AD credentials from settings.
|
||||
@ -404,7 +424,9 @@ class LiteLLMAIHandler(BaseAiHandler):
|
||||
get_logger().info(f"\nSystem prompt:\n{system}")
|
||||
get_logger().info(f"\nUser prompt:\n{user}")
|
||||
|
||||
response = await acompletion(**kwargs)
|
||||
# Get completion with automatic streaming detection
|
||||
resp, finish_reason, response_obj = await self._get_completion(model, **kwargs)
|
||||
|
||||
except openai.RateLimitError as e:
|
||||
get_logger().error(f"Rate limit error during LLM inference: {e}")
|
||||
raise
|
||||
@ -414,19 +436,70 @@ class LiteLLMAIHandler(BaseAiHandler):
|
||||
except Exception as e:
|
||||
get_logger().warning(f"Unknown error during LLM inference: {e}")
|
||||
raise openai.APIError from e
|
||||
if response is None or len(response["choices"]) == 0:
|
||||
raise openai.APIError
|
||||
else:
|
||||
resp = response["choices"][0]['message']['content']
|
||||
finish_reason = response["choices"][0]["finish_reason"]
|
||||
get_logger().debug(f"\nAI response:\n{resp}")
|
||||
|
||||
# log the full response for debugging
|
||||
response_log = self.prepare_logs(response, system, user, resp, finish_reason)
|
||||
get_logger().debug("Full_response", artifact=response_log)
|
||||
get_logger().debug(f"\nAI response:\n{resp}")
|
||||
|
||||
# for CLI debugging
|
||||
if get_settings().config.verbosity_level >= 2:
|
||||
get_logger().info(f"\nAI response:\n{resp}")
|
||||
# log the full response for debugging
|
||||
response_log = self.prepare_logs(response_obj, system, user, resp, finish_reason)
|
||||
get_logger().debug("Full_response", artifact=response_log)
|
||||
|
||||
# for CLI debugging
|
||||
if get_settings().config.verbosity_level >= 2:
|
||||
get_logger().info(f"\nAI response:\n{resp}")
|
||||
|
||||
return resp, finish_reason
|
||||
|
||||
async def _handle_streaming_response(self, response):
|
||||
"""
|
||||
Handle streaming response from acompletion and collect the full response.
|
||||
|
||||
Args:
|
||||
response: The streaming response object from acompletion
|
||||
|
||||
Returns:
|
||||
tuple: (full_response_content, finish_reason)
|
||||
"""
|
||||
full_response = ""
|
||||
finish_reason = None
|
||||
|
||||
try:
|
||||
async for chunk in response:
|
||||
if chunk.choices and len(chunk.choices) > 0:
|
||||
choice = chunk.choices[0]
|
||||
delta = choice.delta
|
||||
content = getattr(delta, 'content', None)
|
||||
if content:
|
||||
full_response += content
|
||||
if choice.finish_reason:
|
||||
finish_reason = choice.finish_reason
|
||||
except Exception as e:
|
||||
get_logger().error(f"Error handling streaming response: {e}")
|
||||
raise
|
||||
|
||||
if not full_response and finish_reason is None:
|
||||
get_logger().warning("Streaming response resulted in empty content with no finish reason")
|
||||
raise openai.APIError("Empty streaming response received without proper completion")
|
||||
elif not full_response and finish_reason:
|
||||
get_logger().debug(f"Streaming response resulted in empty content but completed with finish_reason: {finish_reason}")
|
||||
raise openai.APIError(f"Streaming response completed with finish_reason '{finish_reason}' but no content received")
|
||||
return full_response, finish_reason
|
||||
|
||||
async def _get_completion(self, model, **kwargs):
|
||||
"""
|
||||
Wrapper that automatically handles streaming for required models.
|
||||
"""
|
||||
if model in self.streaming_required_models:
|
||||
kwargs["stream"] = True
|
||||
get_logger().info(f"Using streaming mode for model {model}")
|
||||
response = await acompletion(**kwargs)
|
||||
resp, finish_reason = await self._handle_streaming_response(response)
|
||||
# Create MockResponse for streaming since we don't have the full response object
|
||||
mock_response = MockResponse(resp, finish_reason)
|
||||
return resp, finish_reason, mock_response
|
||||
else:
|
||||
response = await acompletion(**kwargs)
|
||||
if response is None or len(response["choices"]) == 0:
|
||||
raise openai.APIError
|
||||
return (response["choices"][0]['message']['content'],
|
||||
response["choices"][0]["finish_reason"],
|
||||
response)
|
||||
|
Reference in New Issue
Block a user