Merge pull request #1925 from Makonike/feature_only_streaming_model_support

feat: Support Only Streaming Model
This commit is contained in:
Tal
2025-07-13 21:16:49 +03:00
committed by GitHub
2 changed files with 93 additions and 14 deletions

View File

@ -45,6 +45,7 @@ MAX_TOKENS = {
'command-nightly': 4096,
'deepseek/deepseek-chat': 128000, # 128K, but may be limited by config.max_model_tokens
'deepseek/deepseek-reasoner': 64000, # 64K, but may be limited by config.max_model_tokens
'openai/qwq-plus': 131072, # 131K context length, but may be limited by config.max_model_tokens
'replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1': 4096,
'meta-llama/Llama-2-7b-chat-hf': 4096,
'vertex_ai/codechat-bison': 6144,
@ -193,3 +194,8 @@ CLAUDE_EXTENDED_THINKING_MODELS = [
"anthropic/claude-3-7-sonnet-20250219",
"claude-3-7-sonnet-20250219"
]
# Models that require streaming mode
STREAMING_REQUIRED_MODELS = [
"openai/qwq-plus"
]

View File

@ -5,7 +5,7 @@ import requests
from litellm import acompletion
from tenacity import retry, retry_if_exception_type, retry_if_not_exception_type, stop_after_attempt
from pr_agent.algo import CLAUDE_EXTENDED_THINKING_MODELS, NO_SUPPORT_TEMPERATURE_MODELS, SUPPORT_REASONING_EFFORT_MODELS, USER_MESSAGE_ONLY_MODELS
from pr_agent.algo import CLAUDE_EXTENDED_THINKING_MODELS, NO_SUPPORT_TEMPERATURE_MODELS, SUPPORT_REASONING_EFFORT_MODELS, USER_MESSAGE_ONLY_MODELS, STREAMING_REQUIRED_MODELS
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
from pr_agent.algo.utils import ReasoningEffort, get_version
from pr_agent.config_loader import get_settings
@ -15,6 +15,23 @@ import json
OPENAI_RETRIES = 5
class MockResponse:
"""Mock response object for streaming models to enable consistent logging."""
def __init__(self, resp, finish_reason):
self._data = {
"choices": [
{
"message": {"content": resp},
"finish_reason": finish_reason
}
]
}
def dict(self):
return self._data
class LiteLLMAIHandler(BaseAiHandler):
"""
This class handles interactions with the OpenAI API for chat completions.
@ -143,6 +160,9 @@ class LiteLLMAIHandler(BaseAiHandler):
# Models that support extended thinking
self.claude_extended_thinking_models = CLAUDE_EXTENDED_THINKING_MODELS
# Models that require streaming
self.streaming_required_models = STREAMING_REQUIRED_MODELS
def _get_azure_ad_token(self):
"""
Generates an access token using Azure AD credentials from settings.
@ -404,7 +424,9 @@ class LiteLLMAIHandler(BaseAiHandler):
get_logger().info(f"\nSystem prompt:\n{system}")
get_logger().info(f"\nUser prompt:\n{user}")
response = await acompletion(**kwargs)
# Get completion with automatic streaming detection
resp, finish_reason, response_obj = await self._get_completion(model, **kwargs)
except openai.RateLimitError as e:
get_logger().error(f"Rate limit error during LLM inference: {e}")
raise
@ -414,19 +436,70 @@ class LiteLLMAIHandler(BaseAiHandler):
except Exception as e:
get_logger().warning(f"Unknown error during LLM inference: {e}")
raise openai.APIError from e
if response is None or len(response["choices"]) == 0:
raise openai.APIError
else:
resp = response["choices"][0]['message']['content']
finish_reason = response["choices"][0]["finish_reason"]
get_logger().debug(f"\nAI response:\n{resp}")
# log the full response for debugging
response_log = self.prepare_logs(response, system, user, resp, finish_reason)
get_logger().debug("Full_response", artifact=response_log)
get_logger().debug(f"\nAI response:\n{resp}")
# for CLI debugging
if get_settings().config.verbosity_level >= 2:
get_logger().info(f"\nAI response:\n{resp}")
# log the full response for debugging
response_log = self.prepare_logs(response_obj, system, user, resp, finish_reason)
get_logger().debug("Full_response", artifact=response_log)
# for CLI debugging
if get_settings().config.verbosity_level >= 2:
get_logger().info(f"\nAI response:\n{resp}")
return resp, finish_reason
async def _handle_streaming_response(self, response):
"""
Handle streaming response from acompletion and collect the full response.
Args:
response: The streaming response object from acompletion
Returns:
tuple: (full_response_content, finish_reason)
"""
full_response = ""
finish_reason = None
try:
async for chunk in response:
if chunk.choices and len(chunk.choices) > 0:
choice = chunk.choices[0]
delta = choice.delta
content = getattr(delta, 'content', None)
if content:
full_response += content
if choice.finish_reason:
finish_reason = choice.finish_reason
except Exception as e:
get_logger().error(f"Error handling streaming response: {e}")
raise
if not full_response and finish_reason is None:
get_logger().warning("Streaming response resulted in empty content with no finish reason")
raise openai.APIError("Empty streaming response received without proper completion")
elif not full_response and finish_reason:
get_logger().debug(f"Streaming response resulted in empty content but completed with finish_reason: {finish_reason}")
raise openai.APIError(f"Streaming response completed with finish_reason '{finish_reason}' but no content received")
return full_response, finish_reason
async def _get_completion(self, model, **kwargs):
"""
Wrapper that automatically handles streaming for required models.
"""
if model in self.streaming_required_models:
kwargs["stream"] = True
get_logger().info(f"Using streaming mode for model {model}")
response = await acompletion(**kwargs)
resp, finish_reason = await self._handle_streaming_response(response)
# Create MockResponse for streaming since we don't have the full response object
mock_response = MockResponse(resp, finish_reason)
return resp, finish_reason, mock_response
else:
response = await acompletion(**kwargs)
if response is None or len(response["choices"]) == 0:
raise openai.APIError
return (response["choices"][0]['message']['content'],
response["choices"][0]["finish_reason"],
response)