Merge remote-tracking branch 'origin/main'

This commit is contained in:
mrT23
2025-02-17 20:33:28 +02:00
8 changed files with 38 additions and 19 deletions

View File

@ -4,8 +4,8 @@
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://codium.ai/images/pr_agent/logo-dark.png" width="330">
<source media="(prefers-color-scheme: light)" srcset="https://codium.ai/images/pr_agent/logo-light.png" width="330">
<source media="(prefers-color-scheme: dark)" srcset="https://www.qodo.ai/wp-content/uploads/2025/02/PR-Agent-Light-1.png" width="330">
<source media="(prefers-color-scheme: light)" srcset="https://www.qodo.ai/wp-content/uploads/2025/02/PR-Agent-Dark-1.png" width="330">
<img src="https://codium.ai/images/pr_agent/logo-light.png" alt="logo" width="330">
</picture>
@ -213,12 +213,6 @@ Note that this is a promotional bot, suitable only for initial experimentation.
It does not have 'edit' access to your repo, for example, so it cannot update the PR description or add labels (`@CodiumAI-Agent /describe` will publish PR description as a comment). In addition, the bot cannot be used on private repositories, as it does not have access to the files there.
![Review generation process](https://www.codium.ai/images/demo-2.gif)
To set up your own PR-Agent, see the [Installation](https://qodo-merge-docs.qodo.ai/installation/) section below.
Note that when you set your own PR-Agent or use Qodo hosted PR-Agent, there is no need to mention `@CodiumAI-Agent ...`. Instead, directly start with the command, e.g., `/ask ...`.
---
@ -273,8 +267,6 @@ https://openai.com/enterprise-privacy
## Links
[![Join our Discord community](https://raw.githubusercontent.com/Codium-ai/codiumai-vscode-release/main/media/docs/Joincommunity.png)](https://discord.gg/kG35uSHDBc)
- Discord community: https://discord.gg/kG35uSHDBc
- Qodo site: https://www.qodo.ai/
- Blog: https://www.qodo.ai/blog/

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.2 KiB

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 263 KiB

After

Width:  |  Height:  |  Size: 57 KiB

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 1.2 KiB

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.7 KiB

After

Width:  |  Height:  |  Size: 17 KiB

View File

@ -9,8 +9,9 @@ The tool can be triggered automatically every time a new PR is [opened](../usage
![code_suggestions_as_comment_open.png](https://codium.ai/images/pr_agent/code_suggestions_as_comment_open.png){width=512}
Note that the `Apply this suggestion` checkbox, which interactively converts a suggestion into a commitable code comment, is available only for Qodo Merge💎 users.
Note that the following features are available only for Qodo Merge💎 users:
- The `Apply this suggestion` checkbox, which interactively converts a suggestion into a committable code comment
- The `More` checkbox to generate additional suggestions
## Example usage
@ -366,6 +367,10 @@ Note: Chunking is primarily relevant for large PRs. For most PRs (up to 500 line
<td><b>apply_suggestions_checkbox</b></td>
<td> Enable the checkbox to create a committable suggestion. Default is true.</td>
</tr>
<tr>
<td><b>enable_more_suggestions_checkbox</b></td>
<td> Enable the checkbox to generate more suggestions. Default is true.</td>
</tr>
<tr>
<td><b>enable_help_text</b></td>
<td>If set to true, the tool will display a help text in the comment. Default is true.</td>

View File

@ -45,11 +45,11 @@ MAX_TOKENS = {
'vertex_ai/claude-3-5-sonnet-v2@20241022': 100000,
'vertex_ai/gemini-1.5-pro': 1048576,
'vertex_ai/gemini-1.5-flash': 1048576,
'vertex_ai/gemini-2.0-flash-exp': 1048576,
'vertex_ai/gemini-2.0-flash': 1048576,
'vertex_ai/gemma2': 8200,
'gemini/gemini-1.5-pro': 1048576,
'gemini/gemini-1.5-flash': 1048576,
'gemini/gemini-2.0-flash-exp': 1048576,
'gemini/gemini-2.0-flash': 1048576,
'codechat-bison': 6144,
'codechat-bison-32k': 32000,
'anthropic.claude-instant-v1': 100000,
@ -85,11 +85,19 @@ MAX_TOKENS = {
}
USER_MESSAGE_ONLY_MODELS = [
"deepseek/deepseek-reasoner",
"o1-mini",
"o1-mini-2024-09-12",
"o1-preview"
]
NO_SUPPORT_TEMPERATURE_MODELS = [
"deepseek/deepseek-reasoner",
"o1-mini",
"o1-mini-2024-09-12",
"o1",
"o1-2024-12-17",
"o3-mini",
"o3-mini-2025-01-31"
"o3-mini-2025-01-31",
"o1-preview"
]

View File

@ -6,7 +6,7 @@ import requests
from litellm import acompletion
from tenacity import retry, retry_if_exception_type, stop_after_attempt
from pr_agent.algo import USER_MESSAGE_ONLY_MODELS
from pr_agent.algo import NO_SUPPORT_TEMPERATURE_MODELS, USER_MESSAGE_ONLY_MODELS
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
from pr_agent.algo.utils import get_version
from pr_agent.config_loader import get_settings
@ -98,6 +98,9 @@ class LiteLLMAIHandler(BaseAiHandler):
# Models that only use user meessage
self.user_message_only_models = USER_MESSAGE_ONLY_MODELS
# Model that doesn't support temperature argument
self.no_support_temperature_models = NO_SUPPORT_TEMPERATURE_MODELS
def prepare_logs(self, response, system, user, resp, finish_reason):
response_log = response.dict().copy()
response_log['system'] = system
@ -202,7 +205,7 @@ class LiteLLMAIHandler(BaseAiHandler):
{"type": "image_url", "image_url": {"url": img_path}}]
# Currently, some models do not support a separate system and user prompts
if self.user_message_only_models and any(entry.lower() in model.lower() for entry in self.user_message_only_models):
if model in self.user_message_only_models:
user = f"{system}\n\n\n{user}"
system = ""
get_logger().info(f"Using model {model}, combining system and user prompts")
@ -219,11 +222,14 @@ class LiteLLMAIHandler(BaseAiHandler):
"model": model,
"deployment_id": deployment_id,
"messages": messages,
"temperature": temperature,
"timeout": get_settings().config.ai_timeout,
"api_base": self.api_base,
}
# Add temperature only if model supports it
if model not in self.no_support_temperature_models:
kwargs["temperature"] = temperature
if get_settings().litellm.get("enable_callbacks", False):
kwargs = self.add_litellm_callbacks(kwargs)