mirror of
https://github.com/qodo-ai/pr-agent.git
synced 2025-07-04 04:40:38 +08:00
Merge pull request #1805 from group-3-sPRinter/improve/token_handler
Refactor count_tokens method structure in token_handler.py for better extensibility
This commit is contained in:
@ -1,4 +1,6 @@
|
|||||||
from threading import Lock
|
from threading import Lock
|
||||||
|
from math import ceil
|
||||||
|
import re
|
||||||
|
|
||||||
from jinja2 import Environment, StrictUndefined
|
from jinja2 import Environment, StrictUndefined
|
||||||
from tiktoken import encoding_for_model, get_encoding
|
from tiktoken import encoding_for_model, get_encoding
|
||||||
@ -7,6 +9,16 @@ from pr_agent.config_loader import get_settings
|
|||||||
from pr_agent.log import get_logger
|
from pr_agent.log import get_logger
|
||||||
|
|
||||||
|
|
||||||
|
class ModelTypeValidator:
|
||||||
|
@staticmethod
|
||||||
|
def is_openai_model(model_name: str) -> bool:
|
||||||
|
return 'gpt' in model_name or re.match(r"^o[1-9](-mini|-preview)?$", model_name)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def is_anthropic_model(model_name: str) -> bool:
|
||||||
|
return 'claude' in model_name
|
||||||
|
|
||||||
|
|
||||||
class TokenEncoder:
|
class TokenEncoder:
|
||||||
_encoder_instance = None
|
_encoder_instance = None
|
||||||
_model = None
|
_model = None
|
||||||
@ -40,6 +52,10 @@ class TokenHandler:
|
|||||||
method.
|
method.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
# Constants
|
||||||
|
CLAUDE_MODEL = "claude-3-7-sonnet-20250219"
|
||||||
|
CLAUDE_MAX_CONTENT_SIZE = 9_000_000 # Maximum allowed content size (9MB) for Claude API
|
||||||
|
|
||||||
def __init__(self, pr=None, vars: dict = {}, system="", user=""):
|
def __init__(self, pr=None, vars: dict = {}, system="", user=""):
|
||||||
"""
|
"""
|
||||||
Initializes the TokenHandler object.
|
Initializes the TokenHandler object.
|
||||||
@ -51,6 +67,7 @@ class TokenHandler:
|
|||||||
- user: The user string.
|
- user: The user string.
|
||||||
"""
|
"""
|
||||||
self.encoder = TokenEncoder.get_token_encoder()
|
self.encoder = TokenEncoder.get_token_encoder()
|
||||||
|
|
||||||
if pr is not None:
|
if pr is not None:
|
||||||
self.prompt_tokens = self._get_system_user_tokens(pr, self.encoder, vars, system, user)
|
self.prompt_tokens = self._get_system_user_tokens(pr, self.encoder, vars, system, user)
|
||||||
|
|
||||||
@ -79,22 +96,22 @@ class TokenHandler:
|
|||||||
get_logger().error(f"Error in _get_system_user_tokens: {e}")
|
get_logger().error(f"Error in _get_system_user_tokens: {e}")
|
||||||
return 0
|
return 0
|
||||||
|
|
||||||
def calc_claude_tokens(self, patch):
|
def _calc_claude_tokens(self, patch: str) -> int:
|
||||||
try:
|
try:
|
||||||
import anthropic
|
import anthropic
|
||||||
from pr_agent.algo import MAX_TOKENS
|
from pr_agent.algo import MAX_TOKENS
|
||||||
client = anthropic.Anthropic(api_key=get_settings(use_context=False).get('anthropic.key'))
|
|
||||||
MaxTokens = MAX_TOKENS[get_settings().config.model]
|
|
||||||
|
|
||||||
# Check if the content size is too large (9MB limit)
|
client = anthropic.Anthropic(api_key=get_settings(use_context=False).get('anthropic.key'))
|
||||||
if len(patch.encode('utf-8')) > 9_000_000:
|
max_tokens = MAX_TOKENS[get_settings().config.model]
|
||||||
|
|
||||||
|
if len(patch.encode('utf-8')) > self.CLAUDE_MAX_CONTENT_SIZE:
|
||||||
get_logger().warning(
|
get_logger().warning(
|
||||||
"Content too large for Anthropic token counting API, falling back to local tokenizer"
|
"Content too large for Anthropic token counting API, falling back to local tokenizer"
|
||||||
)
|
)
|
||||||
return MaxTokens
|
return max_tokens
|
||||||
|
|
||||||
response = client.messages.count_tokens(
|
response = client.messages.count_tokens(
|
||||||
model="claude-3-7-sonnet-20250219",
|
model=self.CLAUDE_MODEL,
|
||||||
system="system",
|
system="system",
|
||||||
messages=[{
|
messages=[{
|
||||||
"role": "user",
|
"role": "user",
|
||||||
@ -105,27 +122,42 @@ class TokenHandler:
|
|||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
get_logger().error(f"Error in Anthropic token counting: {e}")
|
get_logger().error(f"Error in Anthropic token counting: {e}")
|
||||||
return MaxTokens
|
return max_tokens
|
||||||
|
|
||||||
def estimate_token_count_for_non_anth_claude_models(self, model, default_encoder_estimate):
|
def _apply_estimation_factor(self, model_name: str, default_estimate: int) -> int:
|
||||||
from math import ceil
|
factor = 1 + get_settings().get('config.model_token_count_estimate_factor', 0)
|
||||||
import re
|
get_logger().warning(f"{model_name}'s token count cannot be accurately estimated. Using factor of {factor}")
|
||||||
|
|
||||||
model_is_from_o_series = re.match(r"^o[1-9](-mini|-preview)?$", model)
|
return ceil(factor * default_estimate)
|
||||||
if ('gpt' in get_settings().config.model.lower() or model_is_from_o_series) and get_settings(use_context=False).get('openai.key'):
|
|
||||||
return default_encoder_estimate
|
|
||||||
#else: Model is not an OpenAI one - therefore, cannot provide an accurate token count and instead, return a higher number as best effort.
|
|
||||||
|
|
||||||
elbow_factor = 1 + get_settings().get('config.model_token_count_estimate_factor', 0)
|
def _get_token_count_by_model_type(self, patch: str, default_estimate: int) -> int:
|
||||||
get_logger().warning(f"{model}'s expected token count cannot be accurately estimated. Using {elbow_factor} of encoder output as best effort estimate")
|
"""
|
||||||
return ceil(elbow_factor * default_encoder_estimate)
|
Get token count based on model type.
|
||||||
|
|
||||||
def count_tokens(self, patch: str, force_accurate=False) -> int:
|
Args:
|
||||||
|
patch: The text to count tokens for.
|
||||||
|
default_estimate: The default token count estimate.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
int: The calculated token count.
|
||||||
|
"""
|
||||||
|
model_name = get_settings().config.model.lower()
|
||||||
|
|
||||||
|
if ModelTypeValidator.is_openai_model(model_name) and get_settings(use_context=False).get('openai.key'):
|
||||||
|
return default_estimate
|
||||||
|
|
||||||
|
if ModelTypeValidator.is_anthropic_model(model_name) and get_settings(use_context=False).get('anthropic.key'):
|
||||||
|
return self._calc_claude_tokens(patch)
|
||||||
|
|
||||||
|
return self._apply_estimation_factor(model_name, default_estimate)
|
||||||
|
|
||||||
|
def count_tokens(self, patch: str, force_accurate: bool = False) -> int:
|
||||||
"""
|
"""
|
||||||
Counts the number of tokens in a given patch string.
|
Counts the number of tokens in a given patch string.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
- patch: The patch string.
|
- patch: The patch string.
|
||||||
|
- force_accurate: If True, uses a more precise calculation method.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
The number of tokens in the patch string.
|
The number of tokens in the patch string.
|
||||||
@ -136,10 +168,4 @@ class TokenHandler:
|
|||||||
if not force_accurate:
|
if not force_accurate:
|
||||||
return encoder_estimate
|
return encoder_estimate
|
||||||
|
|
||||||
#else, force_accurate==True: User requested providing an accurate estimation:
|
return self._get_token_count_by_model_type(patch, encoder_estimate)
|
||||||
model = get_settings().config.model.lower()
|
|
||||||
if 'claude' in model and get_settings(use_context=False).get('anthropic.key'):
|
|
||||||
return self.calc_claude_tokens(patch) # API call to Anthropic for accurate token counting for Claude models
|
|
||||||
|
|
||||||
#else: Non Anthropic provided model:
|
|
||||||
return self.estimate_token_count_for_non_anth_claude_models(model, encoder_estimate)
|
|
||||||
|
Reference in New Issue
Block a user