mirror of
https://github.com/qodo-ai/pr-agent.git
synced 2025-07-14 17:50:37 +08:00
refactor(ai_handler): move streaming response handling and Azure token generation to helpers
This commit is contained in:
113
pr_agent/algo/ai_handlers/litellm_helpers.py
Normal file
113
pr_agent/algo/ai_handlers/litellm_helpers.py
Normal file
@ -0,0 +1,113 @@
|
||||
import json
|
||||
|
||||
import openai
|
||||
from azure.identity import ClientSecretCredential
|
||||
|
||||
from pr_agent.config_loader import get_settings
|
||||
from pr_agent.log import get_logger
|
||||
|
||||
|
||||
async def _handle_streaming_response(response):
|
||||
"""
|
||||
Handle streaming response from acompletion and collect the full response.
|
||||
|
||||
Args:
|
||||
response: The streaming response object from acompletion
|
||||
|
||||
Returns:
|
||||
tuple: (full_response_content, finish_reason)
|
||||
"""
|
||||
full_response = ""
|
||||
finish_reason = None
|
||||
|
||||
try:
|
||||
async for chunk in response:
|
||||
if chunk.choices and len(chunk.choices) > 0:
|
||||
choice = chunk.choices[0]
|
||||
delta = choice.delta
|
||||
content = getattr(delta, 'content', None)
|
||||
if content:
|
||||
full_response += content
|
||||
if choice.finish_reason:
|
||||
finish_reason = choice.finish_reason
|
||||
except Exception as e:
|
||||
get_logger().error(f"Error handling streaming response: {e}")
|
||||
raise
|
||||
|
||||
if not full_response and finish_reason is None:
|
||||
get_logger().warning("Streaming response resulted in empty content with no finish reason")
|
||||
raise openai.APIError("Empty streaming response received without proper completion")
|
||||
elif not full_response and finish_reason:
|
||||
get_logger().debug(f"Streaming response resulted in empty content but completed with finish_reason: {finish_reason}")
|
||||
raise openai.APIError(f"Streaming response completed with finish_reason '{finish_reason}' but no content received")
|
||||
return full_response, finish_reason
|
||||
|
||||
|
||||
class MockResponse:
|
||||
"""Mock response object for streaming models to enable consistent logging."""
|
||||
|
||||
def __init__(self, resp, finish_reason):
|
||||
self._data = {
|
||||
"choices": [
|
||||
{
|
||||
"message": {"content": resp},
|
||||
"finish_reason": finish_reason
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
def dict(self):
|
||||
return self._data
|
||||
|
||||
|
||||
def _get_azure_ad_token():
|
||||
"""
|
||||
Generates an access token using Azure AD credentials from settings.
|
||||
Returns:
|
||||
str: The access token
|
||||
"""
|
||||
from azure.identity import ClientSecretCredential
|
||||
try:
|
||||
credential = ClientSecretCredential(
|
||||
tenant_id=get_settings().azure_ad.tenant_id,
|
||||
client_id=get_settings().azure_ad.client_id,
|
||||
client_secret=get_settings().azure_ad.client_secret
|
||||
)
|
||||
# Get token for Azure OpenAI service
|
||||
token = credential.get_token("https://cognitiveservices.azure.com/.default")
|
||||
return token.token
|
||||
except Exception as e:
|
||||
get_logger().error(f"Failed to get Azure AD token: {e}")
|
||||
raise
|
||||
|
||||
|
||||
def _process_litellm_extra_body(kwargs: dict) -> dict:
|
||||
"""
|
||||
Process LITELLM.EXTRA_BODY configuration and update kwargs accordingly.
|
||||
|
||||
Args:
|
||||
kwargs: The current kwargs dictionary to update
|
||||
|
||||
Returns:
|
||||
Updated kwargs dictionary
|
||||
|
||||
Raises:
|
||||
ValueError: If extra_body contains invalid JSON, unsupported keys, or colliding keys
|
||||
"""
|
||||
allowed_extra_body_keys = {"processing_mode", "service_tier"}
|
||||
extra_body = getattr(getattr(get_settings(), "litellm", None), "extra_body", None)
|
||||
if extra_body:
|
||||
try:
|
||||
litellm_extra_body = json.loads(extra_body)
|
||||
if not isinstance(litellm_extra_body, dict):
|
||||
raise ValueError("LITELLM.EXTRA_BODY must be a JSON object")
|
||||
unsupported_keys = set(litellm_extra_body.keys()) - allowed_extra_body_keys
|
||||
if unsupported_keys:
|
||||
raise ValueError(f"LITELLM.EXTRA_BODY contains unsupported keys: {', '.join(unsupported_keys)}. Allowed keys: {', '.join(allowed_extra_body_keys)}")
|
||||
colliding_keys = kwargs.keys() & litellm_extra_body.keys()
|
||||
if colliding_keys:
|
||||
raise ValueError(f"LITELLM.EXTRA_BODY cannot override existing parameters: {', '.join(colliding_keys)}")
|
||||
kwargs.update(litellm_extra_body)
|
||||
except json.JSONDecodeError as e:
|
||||
raise ValueError(f"LITELLM.EXTRA_BODY contains invalid JSON: {str(e)}")
|
||||
return kwargs
|
Reference in New Issue
Block a user