mirror of
https://github.com/qodo-ai/pr-agent.git
synced 2025-07-14 17:50:37 +08:00
refactor(ai_handler): move streaming response handling and Azure token generation to helpers
This commit is contained in:
@ -7,29 +7,14 @@ from tenacity import retry, retry_if_exception_type, retry_if_not_exception_type
|
||||
|
||||
from pr_agent.algo import CLAUDE_EXTENDED_THINKING_MODELS, NO_SUPPORT_TEMPERATURE_MODELS, SUPPORT_REASONING_EFFORT_MODELS, USER_MESSAGE_ONLY_MODELS, STREAMING_REQUIRED_MODELS
|
||||
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
|
||||
from pr_agent.algo.ai_handlers.litellm_helpers import _handle_streaming_response, MockResponse, _get_azure_ad_token, \
|
||||
_process_litellm_extra_body
|
||||
from pr_agent.algo.utils import ReasoningEffort, get_version
|
||||
from pr_agent.config_loader import get_settings
|
||||
from pr_agent.log import get_logger
|
||||
import json
|
||||
|
||||
OPENAI_RETRIES = 5
|
||||
|
||||
|
||||
class MockResponse:
|
||||
"""Mock response object for streaming models to enable consistent logging."""
|
||||
|
||||
def __init__(self, resp, finish_reason):
|
||||
self._data = {
|
||||
"choices": [
|
||||
{
|
||||
"message": {"content": resp},
|
||||
"finish_reason": finish_reason
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
def dict(self):
|
||||
return self._data
|
||||
MODEL_RETRIES = 2
|
||||
|
||||
|
||||
class LiteLLMAIHandler(BaseAiHandler):
|
||||
@ -127,7 +112,7 @@ class LiteLLMAIHandler(BaseAiHandler):
|
||||
if get_settings().get("AZURE_AD.CLIENT_ID", None):
|
||||
self.azure = True
|
||||
# Generate access token using Azure AD credentials from settings
|
||||
access_token = self._get_azure_ad_token()
|
||||
access_token = _get_azure_ad_token()
|
||||
litellm.api_key = access_token
|
||||
openai.api_key = access_token
|
||||
|
||||
@ -163,26 +148,6 @@ class LiteLLMAIHandler(BaseAiHandler):
|
||||
# Models that require streaming
|
||||
self.streaming_required_models = STREAMING_REQUIRED_MODELS
|
||||
|
||||
def _get_azure_ad_token(self):
|
||||
"""
|
||||
Generates an access token using Azure AD credentials from settings.
|
||||
Returns:
|
||||
str: The access token
|
||||
"""
|
||||
from azure.identity import ClientSecretCredential
|
||||
try:
|
||||
credential = ClientSecretCredential(
|
||||
tenant_id=get_settings().azure_ad.tenant_id,
|
||||
client_id=get_settings().azure_ad.client_id,
|
||||
client_secret=get_settings().azure_ad.client_secret
|
||||
)
|
||||
# Get token for Azure OpenAI service
|
||||
token = credential.get_token("https://cognitiveservices.azure.com/.default")
|
||||
return token.token
|
||||
except Exception as e:
|
||||
get_logger().error(f"Failed to get Azure AD token: {e}")
|
||||
raise
|
||||
|
||||
def prepare_logs(self, response, system, user, resp, finish_reason):
|
||||
response_log = response.dict().copy()
|
||||
response_log['system'] = system
|
||||
@ -195,37 +160,6 @@ class LiteLLMAIHandler(BaseAiHandler):
|
||||
response_log['main_pr_language'] = 'unknown'
|
||||
return response_log
|
||||
|
||||
def _process_litellm_extra_body(self, kwargs: dict) -> dict:
|
||||
"""
|
||||
Process LITELLM.EXTRA_BODY configuration and update kwargs accordingly.
|
||||
|
||||
Args:
|
||||
kwargs: The current kwargs dictionary to update
|
||||
|
||||
Returns:
|
||||
Updated kwargs dictionary
|
||||
|
||||
Raises:
|
||||
ValueError: If extra_body contains invalid JSON, unsupported keys, or colliding keys
|
||||
"""
|
||||
allowed_extra_body_keys = {"processing_mode", "service_tier"}
|
||||
extra_body = getattr(getattr(get_settings(), "litellm", None), "extra_body", None)
|
||||
if extra_body:
|
||||
try:
|
||||
litellm_extra_body = json.loads(extra_body)
|
||||
if not isinstance(litellm_extra_body, dict):
|
||||
raise ValueError("LITELLM.EXTRA_BODY must be a JSON object")
|
||||
unsupported_keys = set(litellm_extra_body.keys()) - allowed_extra_body_keys
|
||||
if unsupported_keys:
|
||||
raise ValueError(f"LITELLM.EXTRA_BODY contains unsupported keys: {', '.join(unsupported_keys)}. Allowed keys: {', '.join(allowed_extra_body_keys)}")
|
||||
colliding_keys = kwargs.keys() & litellm_extra_body.keys()
|
||||
if colliding_keys:
|
||||
raise ValueError(f"LITELLM.EXTRA_BODY cannot override existing parameters: {', '.join(colliding_keys)}")
|
||||
kwargs.update(litellm_extra_body)
|
||||
except json.JSONDecodeError as e:
|
||||
raise ValueError(f"LITELLM.EXTRA_BODY contains invalid JSON: {str(e)}")
|
||||
return kwargs
|
||||
|
||||
def _configure_claude_extended_thinking(self, model: str, kwargs: dict) -> dict:
|
||||
"""
|
||||
Configure Claude extended thinking parameters if applicable.
|
||||
@ -326,7 +260,7 @@ class LiteLLMAIHandler(BaseAiHandler):
|
||||
|
||||
@retry(
|
||||
retry=retry_if_exception_type(openai.APIError) & retry_if_not_exception_type(openai.RateLimitError),
|
||||
stop=stop_after_attempt(OPENAI_RETRIES),
|
||||
stop=stop_after_attempt(MODEL_RETRIES),
|
||||
)
|
||||
async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2, img_path: str = None):
|
||||
try:
|
||||
@ -416,7 +350,7 @@ class LiteLLMAIHandler(BaseAiHandler):
|
||||
kwargs["extra_headers"] = litellm_extra_headers
|
||||
|
||||
# Support for custom OpenAI body fields (e.g., Flex Processing)
|
||||
kwargs = self._process_litellm_extra_body(kwargs)
|
||||
kwargs = _process_litellm_extra_body(kwargs)
|
||||
|
||||
get_logger().debug("Prompts", artifact={"system": system, "user": user})
|
||||
|
||||
@ -449,41 +383,6 @@ class LiteLLMAIHandler(BaseAiHandler):
|
||||
|
||||
return resp, finish_reason
|
||||
|
||||
async def _handle_streaming_response(self, response):
|
||||
"""
|
||||
Handle streaming response from acompletion and collect the full response.
|
||||
|
||||
Args:
|
||||
response: The streaming response object from acompletion
|
||||
|
||||
Returns:
|
||||
tuple: (full_response_content, finish_reason)
|
||||
"""
|
||||
full_response = ""
|
||||
finish_reason = None
|
||||
|
||||
try:
|
||||
async for chunk in response:
|
||||
if chunk.choices and len(chunk.choices) > 0:
|
||||
choice = chunk.choices[0]
|
||||
delta = choice.delta
|
||||
content = getattr(delta, 'content', None)
|
||||
if content:
|
||||
full_response += content
|
||||
if choice.finish_reason:
|
||||
finish_reason = choice.finish_reason
|
||||
except Exception as e:
|
||||
get_logger().error(f"Error handling streaming response: {e}")
|
||||
raise
|
||||
|
||||
if not full_response and finish_reason is None:
|
||||
get_logger().warning("Streaming response resulted in empty content with no finish reason")
|
||||
raise openai.APIError("Empty streaming response received without proper completion")
|
||||
elif not full_response and finish_reason:
|
||||
get_logger().debug(f"Streaming response resulted in empty content but completed with finish_reason: {finish_reason}")
|
||||
raise openai.APIError(f"Streaming response completed with finish_reason '{finish_reason}' but no content received")
|
||||
return full_response, finish_reason
|
||||
|
||||
async def _get_completion(self, model, **kwargs):
|
||||
"""
|
||||
Wrapper that automatically handles streaming for required models.
|
||||
@ -492,7 +391,7 @@ class LiteLLMAIHandler(BaseAiHandler):
|
||||
kwargs["stream"] = True
|
||||
get_logger().info(f"Using streaming mode for model {model}")
|
||||
response = await acompletion(**kwargs)
|
||||
resp, finish_reason = await self._handle_streaming_response(response)
|
||||
resp, finish_reason = await _handle_streaming_response(response)
|
||||
# Create MockResponse for streaming since we don't have the full response object
|
||||
mock_response = MockResponse(resp, finish_reason)
|
||||
return resp, finish_reason, mock_response
|
||||
|
113
pr_agent/algo/ai_handlers/litellm_helpers.py
Normal file
113
pr_agent/algo/ai_handlers/litellm_helpers.py
Normal file
@ -0,0 +1,113 @@
|
||||
import json
|
||||
|
||||
import openai
|
||||
from azure.identity import ClientSecretCredential
|
||||
|
||||
from pr_agent.config_loader import get_settings
|
||||
from pr_agent.log import get_logger
|
||||
|
||||
|
||||
async def _handle_streaming_response(response):
|
||||
"""
|
||||
Handle streaming response from acompletion and collect the full response.
|
||||
|
||||
Args:
|
||||
response: The streaming response object from acompletion
|
||||
|
||||
Returns:
|
||||
tuple: (full_response_content, finish_reason)
|
||||
"""
|
||||
full_response = ""
|
||||
finish_reason = None
|
||||
|
||||
try:
|
||||
async for chunk in response:
|
||||
if chunk.choices and len(chunk.choices) > 0:
|
||||
choice = chunk.choices[0]
|
||||
delta = choice.delta
|
||||
content = getattr(delta, 'content', None)
|
||||
if content:
|
||||
full_response += content
|
||||
if choice.finish_reason:
|
||||
finish_reason = choice.finish_reason
|
||||
except Exception as e:
|
||||
get_logger().error(f"Error handling streaming response: {e}")
|
||||
raise
|
||||
|
||||
if not full_response and finish_reason is None:
|
||||
get_logger().warning("Streaming response resulted in empty content with no finish reason")
|
||||
raise openai.APIError("Empty streaming response received without proper completion")
|
||||
elif not full_response and finish_reason:
|
||||
get_logger().debug(f"Streaming response resulted in empty content but completed with finish_reason: {finish_reason}")
|
||||
raise openai.APIError(f"Streaming response completed with finish_reason '{finish_reason}' but no content received")
|
||||
return full_response, finish_reason
|
||||
|
||||
|
||||
class MockResponse:
|
||||
"""Mock response object for streaming models to enable consistent logging."""
|
||||
|
||||
def __init__(self, resp, finish_reason):
|
||||
self._data = {
|
||||
"choices": [
|
||||
{
|
||||
"message": {"content": resp},
|
||||
"finish_reason": finish_reason
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
def dict(self):
|
||||
return self._data
|
||||
|
||||
|
||||
def _get_azure_ad_token():
|
||||
"""
|
||||
Generates an access token using Azure AD credentials from settings.
|
||||
Returns:
|
||||
str: The access token
|
||||
"""
|
||||
from azure.identity import ClientSecretCredential
|
||||
try:
|
||||
credential = ClientSecretCredential(
|
||||
tenant_id=get_settings().azure_ad.tenant_id,
|
||||
client_id=get_settings().azure_ad.client_id,
|
||||
client_secret=get_settings().azure_ad.client_secret
|
||||
)
|
||||
# Get token for Azure OpenAI service
|
||||
token = credential.get_token("https://cognitiveservices.azure.com/.default")
|
||||
return token.token
|
||||
except Exception as e:
|
||||
get_logger().error(f"Failed to get Azure AD token: {e}")
|
||||
raise
|
||||
|
||||
|
||||
def _process_litellm_extra_body(kwargs: dict) -> dict:
|
||||
"""
|
||||
Process LITELLM.EXTRA_BODY configuration and update kwargs accordingly.
|
||||
|
||||
Args:
|
||||
kwargs: The current kwargs dictionary to update
|
||||
|
||||
Returns:
|
||||
Updated kwargs dictionary
|
||||
|
||||
Raises:
|
||||
ValueError: If extra_body contains invalid JSON, unsupported keys, or colliding keys
|
||||
"""
|
||||
allowed_extra_body_keys = {"processing_mode", "service_tier"}
|
||||
extra_body = getattr(getattr(get_settings(), "litellm", None), "extra_body", None)
|
||||
if extra_body:
|
||||
try:
|
||||
litellm_extra_body = json.loads(extra_body)
|
||||
if not isinstance(litellm_extra_body, dict):
|
||||
raise ValueError("LITELLM.EXTRA_BODY must be a JSON object")
|
||||
unsupported_keys = set(litellm_extra_body.keys()) - allowed_extra_body_keys
|
||||
if unsupported_keys:
|
||||
raise ValueError(f"LITELLM.EXTRA_BODY contains unsupported keys: {', '.join(unsupported_keys)}. Allowed keys: {', '.join(allowed_extra_body_keys)}")
|
||||
colliding_keys = kwargs.keys() & litellm_extra_body.keys()
|
||||
if colliding_keys:
|
||||
raise ValueError(f"LITELLM.EXTRA_BODY cannot override existing parameters: {', '.join(colliding_keys)}")
|
||||
kwargs.update(litellm_extra_body)
|
||||
except json.JSONDecodeError as e:
|
||||
raise ValueError(f"LITELLM.EXTRA_BODY contains invalid JSON: {str(e)}")
|
||||
return kwargs
|
Reference in New Issue
Block a user