2023-12-12 23:03:38 +08:00
|
|
|
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
|
2023-12-11 17:49:20 +08:00
|
|
|
import openai
|
|
|
|
from openai.error import APIError, RateLimitError, Timeout, TryAgain
|
|
|
|
from retry import retry
|
|
|
|
|
|
|
|
from pr_agent.config_loader import get_settings
|
2023-12-12 21:51:05 +08:00
|
|
|
from pr_agent.log import get_logger
|
2023-12-11 17:49:20 +08:00
|
|
|
|
|
|
|
OPENAI_RETRIES = 5
|
|
|
|
|
|
|
|
|
|
|
|
class OpenAIHandler(BaseAiHandler):
|
|
|
|
def __init__(self):
|
|
|
|
# Initialize OpenAIHandler specific attributes here
|
|
|
|
try:
|
|
|
|
super().__init__()
|
|
|
|
openai.api_key = get_settings().openai.key
|
|
|
|
if get_settings().get("OPENAI.ORG", None):
|
|
|
|
openai.organization = get_settings().openai.org
|
|
|
|
if get_settings().get("OPENAI.API_TYPE", None):
|
|
|
|
if get_settings().openai.api_type == "azure":
|
|
|
|
self.azure = True
|
|
|
|
openai.azure_key = get_settings().openai.key
|
|
|
|
if get_settings().get("OPENAI.API_VERSION", None):
|
|
|
|
openai.api_version = get_settings().openai.api_version
|
|
|
|
if get_settings().get("OPENAI.API_BASE", None):
|
|
|
|
openai.api_base = get_settings().openai.api_base
|
|
|
|
|
|
|
|
except AttributeError as e:
|
|
|
|
raise ValueError("OpenAI key is required") from e
|
2024-06-03 23:58:31 +08:00
|
|
|
|
2023-12-11 17:49:20 +08:00
|
|
|
@property
|
|
|
|
def deployment_id(self):
|
|
|
|
"""
|
|
|
|
Returns the deployment ID for the OpenAI API.
|
|
|
|
"""
|
|
|
|
return get_settings().get("OPENAI.DEPLOYMENT_ID", None)
|
2024-06-03 23:58:31 +08:00
|
|
|
|
2023-12-11 17:49:20 +08:00
|
|
|
@retry(exceptions=(APIError, Timeout, TryAgain, AttributeError, RateLimitError),
|
|
|
|
tries=OPENAI_RETRIES, delay=2, backoff=2, jitter=(1, 3))
|
|
|
|
async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2):
|
2023-12-12 21:51:05 +08:00
|
|
|
try:
|
|
|
|
deployment_id = self.deployment_id
|
|
|
|
get_logger().info("System: ", system)
|
|
|
|
get_logger().info("User: ", user)
|
|
|
|
messages = [{"role": "system", "content": system}, {"role": "user", "content": user}]
|
|
|
|
|
|
|
|
chat_completion = await openai.ChatCompletion.acreate(
|
|
|
|
model=model,
|
|
|
|
deployment_id=deployment_id,
|
|
|
|
messages=messages,
|
|
|
|
temperature=temperature,
|
|
|
|
)
|
|
|
|
resp = chat_completion["choices"][0]['message']['content']
|
|
|
|
finish_reason = chat_completion["choices"][0]["finish_reason"]
|
|
|
|
usage = chat_completion.get("usage")
|
|
|
|
get_logger().info("AI response", response=resp, messages=messages, finish_reason=finish_reason,
|
2024-06-03 23:58:31 +08:00
|
|
|
model=model, usage=usage)
|
|
|
|
return resp, finish_reason
|
2023-12-12 21:51:05 +08:00
|
|
|
except (APIError, Timeout, TryAgain) as e:
|
|
|
|
get_logger().error("Error during OpenAI inference: ", e)
|
|
|
|
raise
|
|
|
|
except (RateLimitError) as e:
|
|
|
|
get_logger().error("Rate limit error during OpenAI inference: ", e)
|
|
|
|
raise
|
|
|
|
except (Exception) as e:
|
|
|
|
get_logger().error("Unknown error during OpenAI inference: ", e)
|
2024-06-03 23:58:31 +08:00
|
|
|
raise TryAgain from e
|