In this case, we can fit the entire PR in a single prompt:
1. Exclude binary files and non code files (e.g. images, pdfs, etc)
2. We Expand the surrounding context of each patch to 3 lines above and below the patch
### Large PR
#### Motivation
Pull Requests can be very long and contain a lot of information with varying degree of relevance to the pr-agent.
We want to be able to pack as much information as possible in a single LMM prompt, while keeping the information relevant to the pr-agent.
#### Compression strategy
We prioritize additions over deletions:
- Combine all deleted files into a single list (`deleted files`)
- File patches are a list of hunks, remove all hunks of type deletion-only from the hunks in the file patch
#### Adaptive and token-aware file patch fitting
We use [tiktoken](https://github.com/openai/tiktoken) to tokenize the patches after the modifications described above, and we use the following strategy to fit the patches into the prompt:
1. Within each language we sort the files by the number of tokens in the file (in descending order):
2. Iterate through the patches in the order described above
3. Add the patches to the prompt until the prompt reaches a certain buffer from the max token length
4. If there are still patches left, add the remaining patches as a list called `other modified files` to the prompt until the prompt reaches the max token length (hard stop), skip the rest of the patches.
5. If we haven't reached the max token length, add the `deleted files` to the prompt until the prompt reaches the max token length (hard stop), skip the rest of the patches.