Qodo Merge implements a **self-reflection** process where the AI model reflects, scores, and re-ranks its own suggestions, eliminating irrelevant or incorrect ones.
This approach improves the quality and relevance of suggestions, saving users time and enhancing their experience.
Given that not all generated code suggestions will be relevant, it is crucial to enable users to review them in a fast and efficient way, allowing quick identification and filtering of non-applicable ones.
The AI model is initially tasked with generating suggestions, and outputting them in order of importance.
However, in practice we observe that models often struggle to simultaneously generate high-quality code suggestions and rank them well in a single pass.
3. Utilizing these scores to re-rank the suggestions and filter out incorrect ones (with a score of 0).
4. Optionally, filtering out all suggestions below a user-defined score threshold.
Note that presenting all generated suggestions simultaneously provides the model with a comprehensive context, enabling it to make more informed decisions compared to evaluating each suggestion individually.
To conclude, the self-reflection process enables Qodo Merge to prioritize suggestions based on their importance, eliminate inaccurate or irrelevant proposals, and optionally exclude suggestions that fall below a specified threshold of significance.