Files
pr-agent/pr_agent/tools/pr_description.py

132 lines
5.3 KiB
Python
Raw Normal View History

2023-07-13 17:24:56 +03:00
import copy
import json
import logging
2023-07-24 09:15:45 +03:00
from typing import Tuple, List
2023-07-13 17:24:56 +03:00
from jinja2 import Environment, StrictUndefined
from pr_agent.algo.ai_handler import AiHandler
2023-07-23 16:16:36 +03:00
from pr_agent.algo.pr_processing import get_pr_diff, retry_with_fallback_models
2023-07-13 17:24:56 +03:00
from pr_agent.algo.token_handler import TokenHandler
from pr_agent.config_loader import settings
from pr_agent.git_providers import get_git_provider
from pr_agent.git_providers.git_provider import get_main_pr_language
class PRDescription:
def __init__(self, pr_url: str):
self.git_provider = get_git_provider()(pr_url)
self.main_pr_language = get_main_pr_language(
self.git_provider.get_languages(), self.git_provider.get_files()
)
self.ai_handler = AiHandler()
self.vars = {
"title": self.git_provider.pr.title,
"branch": self.git_provider.get_pr_branch(),
"description": self.git_provider.get_pr_description(),
2023-07-13 17:24:56 +03:00
"language": self.main_pr_language,
"diff": "", # empty diff for initial calculation
}
self.token_handler = TokenHandler(self.git_provider.pr,
self.vars,
settings.pr_description_prompt.system,
settings.pr_description_prompt.user)
self.patches_diff = None
self.prediction = None
async def describe(self):
logging.info('Generating a PR description...')
2023-07-17 08:18:42 +03:00
if settings.config.publish_output:
2023-07-13 17:24:56 +03:00
self.git_provider.publish_comment("Preparing pr description...", is_temporary=True)
2023-07-23 16:16:36 +03:00
await retry_with_fallback_models(self._prepare_prediction)
2023-07-13 17:24:56 +03:00
logging.info('Preparing answer...')
2023-07-19 20:25:54 +03:00
pr_title, pr_body, pr_types, markdown_text = self._prepare_pr_answer()
2023-07-17 08:18:42 +03:00
if settings.config.publish_output:
2023-07-13 17:24:56 +03:00
logging.info('Pushing answer...')
2023-07-17 08:18:42 +03:00
if settings.pr_description.publish_description_as_comment:
self.git_provider.publish_comment(markdown_text)
else:
self.git_provider.publish_description(pr_title, pr_body)
2023-07-19 20:25:54 +03:00
self.git_provider.publish_labels(pr_types)
2023-07-13 17:24:56 +03:00
self.git_provider.remove_initial_comment()
return ""
2023-07-23 16:16:36 +03:00
async def _prepare_prediction(self, model: str):
logging.info('Getting PR diff...')
self.patches_diff = get_pr_diff(self.git_provider, self.token_handler, model)
logging.info('Getting AI prediction...')
self.prediction = await self._get_prediction(model)
2023-07-24 11:31:35 +03:00
async def _get_prediction(self, model: str) -> str:
"""
Generate an AI prediction for the PR description based on the provided model.
Args:
model (str): The name of the model to be used for generating the prediction.
Returns:
str: The generated AI prediction.
"""
2023-07-13 17:24:56 +03:00
variables = copy.deepcopy(self.vars)
variables["diff"] = self.patches_diff # update diff
2023-07-24 11:31:35 +03:00
2023-07-13 17:24:56 +03:00
environment = Environment(undefined=StrictUndefined)
system_prompt = environment.from_string(settings.pr_description_prompt.system).render(variables)
user_prompt = environment.from_string(settings.pr_description_prompt.user).render(variables)
2023-07-24 11:31:35 +03:00
2023-07-13 17:24:56 +03:00
if settings.config.verbosity_level >= 2:
logging.info(f"\nSystem prompt:\n{system_prompt}")
logging.info(f"\nUser prompt:\n{user_prompt}")
2023-07-24 11:31:35 +03:00
response, finish_reason = await self.ai_handler.chat_completion(
model=model,
temperature=0.2,
system=system_prompt,
user=user_prompt
)
2023-07-13 17:24:56 +03:00
return response
2023-07-24 09:15:45 +03:00
def _prepare_pr_answer(self) -> Tuple[str, str, List[str], str]:
"""
Prepare the PR description based on the AI prediction data.
Returns:
- title: a string containing the PR title.
- pr_body: a string containing the PR body in a markdown format.
- pr_types: a list of strings containing the PR types.
- markdown_text: a string containing the AI prediction data in a markdown format.
"""
# Load the AI prediction data into a dictionary
2023-07-13 17:24:56 +03:00
data = json.loads(self.prediction)
2023-07-24 09:15:45 +03:00
# Initialization
markdown_text = pr_body = ""
pr_types = []
# Iterate over the dictionary items and append the key and value to 'markdown_text' in a markdown format
2023-07-17 08:18:42 +03:00
for key, value in data.items():
markdown_text += f"## {key}\n\n"
markdown_text += f"{value}\n\n"
2023-07-24 09:15:45 +03:00
# If the 'PR Type' key is present in the dictionary, split its value by comma and assign it to 'pr_types'
2023-07-19 20:25:54 +03:00
if 'PR Type' in data:
pr_types = data['PR Type'].split(',')
2023-07-24 09:15:45 +03:00
# Assign the value of the 'PR Title' key to 'title' variable and remove it from the dictionary
title = data.pop('PR Title')
# Iterate over the remaining dictionary items and append the key and value to 'pr_body' in a markdown format,
# except for the items containing the word 'walkthrough'
2023-07-13 17:24:56 +03:00
for key, value in data.items():
2023-07-13 17:53:17 +03:00
pr_body += f"{key}:\n"
2023-07-13 17:31:28 +03:00
if 'walkthrough' in key.lower():
2023-07-13 17:53:17 +03:00
pr_body += f"{value}\n"
2023-07-13 17:24:56 +03:00
else:
2023-07-13 17:53:17 +03:00
pr_body += f"**{value}**\n\n___\n"
2023-07-24 09:15:45 +03:00
2023-07-13 17:24:56 +03:00
if settings.config.verbosity_level >= 2:
2023-07-13 17:53:17 +03:00
logging.info(f"title:\n{title}\n{pr_body}")
2023-07-24 09:15:45 +03:00
2023-07-19 20:25:54 +03:00
return title, pr_body, pr_types, markdown_text