Files
pr-agent/pr_agent/algo/ai_handlers/openai_ai_handler.py

73 lines
3.1 KiB
Python
Raw Normal View History

from os import environ
2023-12-12 23:03:38 +08:00
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
2023-12-11 17:49:20 +08:00
import openai
from openai import AsyncOpenAI
from tenacity import retry, retry_if_exception_type, retry_if_not_exception_type, stop_after_attempt
2023-12-11 17:49:20 +08:00
from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
2023-12-11 17:49:20 +08:00
from pr_agent.config_loader import get_settings
from pr_agent.log import get_logger
2023-12-11 17:49:20 +08:00
OPENAI_RETRIES = 5
class OpenAIHandler(BaseAiHandler):
def __init__(self):
# Initialize OpenAIHandler specific attributes here
try:
super().__init__()
environ["OPENAI_API_KEY"] = get_settings().openai.key
2023-12-11 17:49:20 +08:00
if get_settings().get("OPENAI.ORG", None):
openai.organization = get_settings().openai.org
if get_settings().get("OPENAI.API_TYPE", None):
if get_settings().openai.api_type == "azure":
self.azure = True
openai.azure_key = get_settings().openai.key
if get_settings().get("OPENAI.API_VERSION", None):
openai.api_version = get_settings().openai.api_version
if get_settings().get("OPENAI.API_BASE", None):
environ["OPENAI_BASE_URL"] = get_settings().openai.api_base
2023-12-11 17:49:20 +08:00
except AttributeError as e:
raise ValueError("OpenAI key is required") from e
2023-12-11 17:49:20 +08:00
@property
def deployment_id(self):
"""
Returns the deployment ID for the OpenAI API.
"""
return get_settings().get("OPENAI.DEPLOYMENT_ID", None)
@retry(
retry=retry_if_exception_type(openai.APIError) & retry_if_not_exception_type(openai.RateLimitError),
stop=stop_after_attempt(OPENAI_RETRIES),
)
2025-05-25 14:53:17 +09:00
async def chat_completion(self, model: str, system: str, user: str, temperature: float = 0.2, img_path: str = None):
try:
2025-05-25 14:53:17 +09:00
if img_path:
get_logger().warning(f"Image path is not supported for OpenAIHandler. Ignoring image path: {img_path}")
get_logger().info("System: ", system)
get_logger().info("User: ", user)
messages = [{"role": "system", "content": system}, {"role": "user", "content": user}]
client = AsyncOpenAI()
chat_completion = await client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
)
resp = chat_completion.choices[0].message.content
finish_reason = chat_completion.choices[0].finish_reason
usage = chat_completion.usage
get_logger().info("AI response", response=resp, messages=messages, finish_reason=finish_reason,
model=model, usage=usage)
return resp, finish_reason
except openai.RateLimitError as e:
get_logger().error(f"Rate limit error during LLM inference: {e}")
raise
except openai.APIError as e:
get_logger().warning(f"Error during LLM inference: {e}")
raise
except Exception as e:
get_logger().warning(f"Unknown error during LLM inference: {e}")
raise openai.APIError from e