Files
pr-agent/pr_agent/algo/ai_handlers/litellm_helpers.py

113 lines
4.1 KiB
Python
Raw Normal View History

import json
import openai
from azure.identity import ClientSecretCredential
from pr_agent.config_loader import get_settings
from pr_agent.log import get_logger
async def _handle_streaming_response(response):
"""
Handle streaming response from acompletion and collect the full response.
Args:
response: The streaming response object from acompletion
Returns:
tuple: (full_response_content, finish_reason)
"""
full_response = ""
finish_reason = None
try:
async for chunk in response:
if chunk.choices and len(chunk.choices) > 0:
choice = chunk.choices[0]
delta = choice.delta
content = getattr(delta, 'content', None)
if content:
full_response += content
if choice.finish_reason:
finish_reason = choice.finish_reason
except Exception as e:
get_logger().error(f"Error handling streaming response: {e}")
raise
if not full_response and finish_reason is None:
get_logger().warning("Streaming response resulted in empty content with no finish reason")
raise openai.APIError("Empty streaming response received without proper completion")
elif not full_response and finish_reason:
get_logger().debug(f"Streaming response resulted in empty content but completed with finish_reason: {finish_reason}")
raise openai.APIError(f"Streaming response completed with finish_reason '{finish_reason}' but no content received")
return full_response, finish_reason
class MockResponse:
"""Mock response object for streaming models to enable consistent logging."""
def __init__(self, resp, finish_reason):
self._data = {
"choices": [
{
"message": {"content": resp},
"finish_reason": finish_reason
}
]
}
def dict(self):
return self._data
def _get_azure_ad_token():
"""
Generates an access token using Azure AD credentials from settings.
Returns:
str: The access token
"""
from azure.identity import ClientSecretCredential
try:
credential = ClientSecretCredential(
tenant_id=get_settings().azure_ad.tenant_id,
client_id=get_settings().azure_ad.client_id,
client_secret=get_settings().azure_ad.client_secret
)
# Get token for Azure OpenAI service
token = credential.get_token("https://cognitiveservices.azure.com/.default")
return token.token
except Exception as e:
get_logger().error(f"Failed to get Azure AD token: {e}")
raise
def _process_litellm_extra_body(kwargs: dict) -> dict:
"""
Process LITELLM.EXTRA_BODY configuration and update kwargs accordingly.
Args:
kwargs: The current kwargs dictionary to update
Returns:
Updated kwargs dictionary
Raises:
ValueError: If extra_body contains invalid JSON, unsupported keys, or colliding keys
"""
allowed_extra_body_keys = {"processing_mode", "service_tier"}
extra_body = getattr(getattr(get_settings(), "litellm", None), "extra_body", None)
if extra_body:
try:
litellm_extra_body = json.loads(extra_body)
if not isinstance(litellm_extra_body, dict):
raise ValueError("LITELLM.EXTRA_BODY must be a JSON object")
unsupported_keys = set(litellm_extra_body.keys()) - allowed_extra_body_keys
if unsupported_keys:
raise ValueError(f"LITELLM.EXTRA_BODY contains unsupported keys: {', '.join(unsupported_keys)}. Allowed keys: {', '.join(allowed_extra_body_keys)}")
colliding_keys = kwargs.keys() & litellm_extra_body.keys()
if colliding_keys:
raise ValueError(f"LITELLM.EXTRA_BODY cannot override existing parameters: {', '.join(colliding_keys)}")
kwargs.update(litellm_extra_body)
except json.JSONDecodeError as e:
raise ValueError(f"LITELLM.EXTRA_BODY contains invalid JSON: {str(e)}")
return kwargs